K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2016

 Tam giác vuông ABC, vuông tại A, có AM là trung tuyến 
trên tia đối của MA lấy điểm D sao cho MD=AM 
Do đó AM=1/2 AD (1) 
suy ra tứ giác ABDC là hình bình hành, có ^A=90* 
nên ABDC là hình chữ nhật 
suy ra AD=BC (2) 
Từ (1) và (2) ta có AM = 1/2 BC 
Vậy trong 1 tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền. 

K đúng vài cái đc hông

19 tháng 5 2016

 Tam giác vuông ABC, vuông tại A, có AM là trung tuyến 
trên tia đối của MA lấy điểm D sao cho MD=AM 
Do đó AM=1/2 AD (1) 
suy ra tứ giác ABDC là hình bình hành, có ^A=90* 
nên ABDC là hình chữ nhật 
suy ra AD=BC (2) 
Từ (1) và (2) ta có AM = 1/2 BC 
Vậy trong 1 tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền. 

K đúng vài cái đc hông

27 tháng 9 2016

a) Gỉả Sử \(\Delta ABC\) có AM, BN, CP là các trung tuyến
Đầu tiên, Ta sẽ chứng minh nếu AB < AC thì CP > BN

\(\Delta ABC\) và \(\Delta AMC\) có :

AM : chung
MB = MC (Do AM là trung tuyến)
AB < AC (gt)  \(\Leftrightarrow\widehat{AMB}< \widehat{AMC}\)

\(\Delta GMB\) và \(\Delta GMC\) có :

GM : chung
MB = MC (trung tuyến AM)

\(\widehat{GMB}< \widehat{GMC}\Rightarrow GB< GC\)

Hay \(\frac{2}{3}BN< \frac{2}{3}CP\Rightarrow BN< CP\)

b) (Phương pháp phản chứng) Ta sẽ chứng minh nếu BN < CP thì AB < AC
Giả sử AB \geq AC
Nếu AB = AC \(\Rightarrow\Delta ABC\) cân tại A

\(\Rightarrow\)BN = CP (2 đường trung tuyến bằng nhau)
trái gt (BN < CP)
nếu AB > AC, thep cm phần a, ta có:
CP < BN (trái gt)
Điều ta giả thiết AB \geq AC là sai. Vậy AB < AC

 

 

28 tháng 3 2017

Giải:

A N B B' H C C' M

Giả thiết \(AC>AB\) thì phải chứng minh \(BM< CN\)

Thực hiện \(T\overrightarrow{\left(NM\right)}\) thì: \(B\rightarrow B';C\rightarrow C';CN\rightarrow C'M;BN\rightarrow B'M\)

Bài toán trở thành \(BM< C'M\)

Từ \(M\) hạ \(MH\) vuông góc với \(BC\)

Do \(AC>AB\Rightarrow\dfrac{1}{2AC}>\dfrac{1}{2}AB\Rightarrow BC>MB'\)

\(\Rightarrow HC>HB'\) (đường xiên lớn thì hình chiếu lớn hơn).

Lại có:

\(BB'=NM=CC'\Rightarrow CC+HC>BB'+B'H\)

\(\Rightarrow HC'>BH\Rightarrow MC'>MB\) Hay \(BM< C'M\)

\(\Rightarrow CN>MB\) Hay \(BM< CN\)

Vậy trong một tam giác trung tuyến ứng với cạnh nhỏ thì lớn hơn trung tuyến ứng với cạnh lớn (Đpcm)

ΔABC có AM là trung tuyến. Cm AM<(AB+AC)/2

Lấy D sao cho M là trung điểm của AD. 

Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

=>AB=CD và AC=BD

AB+AC=AC+CD>AD

=>AB+AC>2AM

=>AM<(AB+AC)/2