Cho \(\Delta ABC\) nhọn. Trên AC lấy điểm D sao cho \(\widehat{CBD}=\widehat{CAB}\), trên BC lấy điểm E sao cho \(\widehat{BAE}=\widehat{ACB}\), trên AB lấy điểm F sao cho \(\widehat{ACF}=\widehat{ABC}\). Chứng minh rằng \(AF+BE+CD\ge C_{ABC}\)(với \(C_{ABC}\)là chu vi tam giác ABC)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\)BAE và \(\Delta\)DAC có: ^BAE = ^DAC ( đối đỉnh ) ; AD = AB ( gt ) ; AE = AC ( gt )
=> \(\Delta\)BAE = \(\Delta\)DAC ( c.g.c)
=> BE = DC
b) Tương tự câu a dễ dàng cm đc: \(\Delta\)ADE = \(\Delta\)ABC => ^ADE = ^ABC => DE//BC
=> ^EDI = ^DIC mà ^EDI = ^BDI ( DI là phân giác ^BDE )
=> ^DIC = ^BDI hay ^DIB = ^IDB => \(\Delta\)BDI cân tại B.
c) Ta có: ^DBC là góc ngoài tại đỉnh B của \(\Delta\)BDI => ^DBC = ^BDI + ^BID = 2. ^BID = 2. ^CIF( theo b) (1)
Có: CF là phân giác ^BCA =>^BCF = ^ACF => ^BCA = ^BCF + ^ACF = 2. ^BCF = 2. ^ICF (2)
Lại có: ^CFD là góc ngoài của \(\Delta\)FCI => ^CFD = ^CIF + ^ICF (3)
Từ (1) ; (2) ; (3) => 2 .^CFD = 2 ^CIF + 2. ^ICF = ^DBC + ^BCA = ^DBC + ^CED ( ^CED = ^BCA vì ED //BC )
lkjhgfgy6tyur65445676t 7 777676r64576556756777777777777/.,mnbvfggjhyjuhjtyj324345
Xét tam giác vuông ABC và tam giác vuông ADE có :
AB=AD
AC=AE
=> tam giác ABC= tam giác ADE ( 2 cạnh góc vuông )
Từ các cặp tam giác đồng dạng ta có:
\(BE=\frac{AB^2}{BC};CD=\frac{BC^2}{CA};AF=\frac{CA^2}{AB}\)
\(\Rightarrow AF+BE+CD=\frac{AB^2}{BC}+\frac{BC^2}{CA}+\frac{CA^2}{AB}\ge\frac{\left(AB+BC+CA\right)^2}{AB+BC+CA}=C_{ABC}\)
Dấu bằng xảy ra khi \(\frac{AB}{BC}=\frac{BC}{CA}=\frac{CA}{AB}=\frac{AB+BC+CA}{BC+CA+AB}=1\) hay tam giác ABC đều.
jjjjjjjqqqqqqqqaaaaaaaaooooooooooyyyyyyyyyyrrrrrrriggigigigigiiggigigigggigiigigigigigiggigigi