K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔICB có IB=IC

nên ΔIBC cân tại I

Suy ra: \(\widehat{NCB}=\widehat{MBC}\)

Xét ΔNCB vuông tại N và ΔMBC vuông tại M có 

BC chung

\(\widehat{NCB}=\widehat{MBC}\)

Do đó: ΔNCB=ΔMBC

Suy ra: \(\widehat{ABC}=\widehat{ACB}\)

hay ΔABC cân tại A

11 tháng 2 2022

bn ko bik thì nói mk ko bik sao bn nói vớ vẩn vậy ?

11 tháng 2 2022

Vớ vẩn 

16 tháng 2 2020

Câu a

Xét tam giác vuông AB0 và tam giác vuông ACO 

AB=AC( gt )

AO cạnh chung 

=> Tam giác ABO = Tam giác ACO (ch-cgv)

=>OB=OC( 2 cạnh tương ứng )

Xét tam giác vuông MBO và tam giác vuông NCO

MB=NC ( gt)

OB=OC (cmt)

=>Tam giác MBO = Tam giác NCO(  2 cgv )

=>OM=ON

=>tam giác NOM cân tại 0

cTa có tam giác NOM cân tại O

Lại có : HOB^=HOC^ (cn câu a)

=.HOM^+MOB^=HON^+NOC^

Mà MOB^=NOC^ (cm câu a)

=>HOM^=HON^

Xét tam giác MEO và tam giác NEO

EO cạnh chung

EOM^=EON^ (cmt)

OM=ON ( cm câu a)

=>Tam giác EOM=tam giác EON ( c-g-c )

=> OEN^=OEM^

Mà OEN^+OEM^=180* (góc bẹt)

=>OEM^=OEN^=180*/2=90* ( đpcm )

16 tháng 2 2020

- câu b làm thế nào vậy ạ?

8 tháng 1 2018

B C A D E M N I H K

a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\)  (Hai góc đối đỉnh)

Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)

Xét tam giác vuông BDM và CEN có:

BD = CE

\(\widehat{ECN}=\widehat{DBM}\)  (cmt)

\(\Rightarrow\Delta BDM=\Delta CEN\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow BM=CN\)   (Hai cạnh tương ứng)

b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)

Ta thấy MD và NE cùng vuông góc BC nên MD // NE 

Suy ra \(\widehat{DMI}=\widehat{ENI}\)   (Hai góc so le trong)

Xét tam giác vuông MDI và NEI có:

MD = NE

\(\widehat{DMI}=\widehat{ENI}\)

\(\Rightarrow\Delta MDI=\Delta NEI\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow MI=NI\)

Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.

c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\)    (1)  và BK = CK

Xét tam giác BMK và CNK có:

BM = CN (cma)

MK = NK (cmb)

BK = CK (cmt)

\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\)   (2)

Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)

Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)

Vậy \(KC\perp AN\)

16 tháng 9 2018

dvdtdhnsrthwsrh

a: Xét ΔBCE vuông tại E và ΔCBD vuông tại D có 

BC chung

góc CBE chung

Do đó: ΔBCE=ΔCBD

b: Ta có: ΔCDB vuông tại D

mà DI là trung tuyến

nên DI=BC/2(1)

Ta có: ΔCEB vuông tại E

mà EI là trung tuyến

nên EI=BC/2(2)

Từ (1) và (2) suy ra IE=ID

30 tháng 11 2023

Sửa đề: Vuông góc với AC,AP tại N,P

a: Xét ΔBPI vuông tại P và ΔBMI vuông tại M có

BI chung

\(\widehat{PBI}=\widehat{MBI}\)

Do đó: ΔBPI=ΔBMI

=>BP=BM

b: Xét ΔIMC vuông tại M và ΔINC vuông tại N có

CI chung

\(\widehat{MCI}=\widehat{NCI}\)

Do đó: ΔIMC=ΔINC

=>IM=IN

c: ΔMCI=ΔNCI

=>MC=CN

BP+CN

=BM+MC

=BC

d: ΔBPI=ΔBMI

=>IP=IM

mà IM=IN

nên IP=IN

Xét ΔAPI vuông tại P và ΔANI vuông tại N có

AI chung

IP=IN

Do đó: ΔAPI=ΔANI

=>\(\widehat{PAI}=\widehat{NAI}\)

=>AI là phân giác của \(\widehat{BAC}\)

a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có

AB=AC

góc A chung

=>ΔAMB=ΔANC

b: AN=căn 10^2-8^2=6cm=AM

c: Xét ΔNAH vuông tại N và ΔMAH vuông tại M có

AH chung

AN=AM

=>ΔNAH=ΔMAH

=>góc NAH=góc MAH

=>H nằm trên tia phân giác của góc BAC