Cho tam giác ABC. CMR: AB + AC > BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác vuông ABI và tam giác vuông ACI có:
AB=AC(gt)
góc ABI= góc ACI (gt)
=> tam giác ABI= tam giác ACI ( cạnh huyền góc nhọn)
=> BI=CI (cặp cạnh tương ứng)
hay I là trung điểm BC
=>góc BAI = góc CAI ( cặp góc tương ứng )
b) Xét tam giác AEI và tam giác AFI có
AE=AF(gt)
góc BAI= góc CAI ( cmt)
AI cạnh chung
=> tam giác AEI= AFI ( cạnh góc cạnh )
=>EI=FI (cặp cạnh tương ứng )
xét tam giác EIF có
EI=IF ( cmt)
=> tam giác EIF cân tại I
c) Ta có
AB=AC (gt)
AE=AF(gt)
=> AB-AE=AC-AF
hay EB=FC
Xét tam giác EBI và tam giác FCI có
EB=FC (cmt)
BI=CI(cmt)
EI=FI(cmt)
=> tam giác EBI=tam giác FCI ( cạnh cạnh cạnh)
a) Xét tam giác vuông ABI và tam giác vuông ACI có
AB=AC(gt)
B^=C^(gt)
=> tam giác ABI= tam giác ACI ( cạnh huyền góc nhọn)
=> góc BAI= góc CAI (cgtư)
=> BI=IC( c-c-t-ư)
mà B,I,C thẳng hàng
=> I là trung điểm BC
b) Xét tam giác AEI và tam giác AFI có
AE=AF( cmt )
goác BAI =góc CAI (cmt )
AI cạnh chung
=>Tam giác AEI= tam giác AFI (c-g-c)
=> EI=FI( cctư)
Xét tam giác EIF có
EI=FI(cmt)
=> tam giác EIF cân tại I
c) Ta có AB=AC(gt)
AE=AF(gt)
=> AB-AE=AC-AF
hay EB=FC
Xét tam giác EBI và tam giác FCI có
EB=FC(cmt)
BI=IC(cmt)
EI=FI(cmt)
=> tam giác EBI=tam giác
FCI (c-c-c)
( sửa F thành O nha bạn )
a. xét tam giác ABM và tam giác ACN có
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
BM = CN ( gt )
Vậy tam giác ABM = tam giác ACN ( c.g.c )
b,c,d. xét tam giác vuông BHM và tam giác vuông CKN có:
góc B = góc C ( ABC cân )
BM = CN ( gt )
Vậy tam giác vuông BHM = tam giác vuông CKN ( cạnh huyền . góc nhọn )
=> MH = NK ( 2 cạnh tương ứng )
=> BH = CK ( 2 cạnh tương ứng )
Kẻ AE vuông với BC
=> AE vuông BC (1)
ta có: AH = AK ( ABC cân, BH = CK ( cmt ) )
=> tam giác AHK cân ( câu c )
Mà A là đường cao của tam giác ABC cũng là đường cao tam giác AHK => AO là phân giác góc BAC ( câu d )
=> AO vuông HK (2)
Từ (1) và (2) => HK // BC ( 2 cạnh cùng vuông với cạnh thứ 3 ) ( câu b )
e. Áp dụng định lí pitago vào tam giác vuông BMH, có:
\(BM^2=MH^2+BH^2\)
\(BM^2=3^2+4^2=\sqrt{9+16}=\sqrt{25}=5cm\)
BM = 5cm
Mà BM = MN = NC ( gt )
=> BC = BM + MN + NC = 5 +5 + 5 =15 cm
=> BC =15 cm
a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :
Góc AHC = góc BAC = 90o; góc C chung
=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)
b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144
=> \(AB=\sqrt{144}=12\left(cm\right)\)
Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')
=> Góc BIH = góc ADB
Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB
=> Tam giác AID cân tại A
d) ('Mình ko biết')
a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :
Góc AHC = góc BAC = 90o; góc C chung
=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)
b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144
=> \(AB=\sqrt{144}=12\left(cm\right)\)
Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')
=> Góc BIH = góc ADB
Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB
=> Tam giác AID cân tại A
Sửa đề: góc AMC vuông
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Kẻ đường cao \(AH\).
Xét tam giác vuông \(AHB\)có: \(AB>BH\)(cạnh huyền lớn hơn cạnh góc vuông).
Xét tam giác vuông \(AHC\)có: \(AC>CH\)(cạnh huyền lớn hơn cạnh góc vuông).
Suy ra \(AB+AC>BH+CH=BC\).