K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

*x=312 và y=26

*x=216 và y=27

*x=168 và y=28

*x=120 và y=30

*x=96 và y=32

*x=88 và y=33

*x=72 và y=36

*x=60 và y=40

*x=56 và y=42

*x=72 và y=48

*x=42 và y=56

*x=40 và y=60

*x=36 và y=72

*x=33 và y=88

*x=32 và y=96

*x=30 và y=120

*x=28 và y=168

*x=27 và y=216

*x=26 và y=312

*x=600 và y=25

*x=25 và y=60

18 tháng 5 2016

tách 1/24=?+? 

rút gọn ra đc mẫu =1 là xong

bài này dài nên làm làm j hại não ra

18 tháng 5 2016

*x=312 và y=26

*x=216 và y=27

*x=168 và y=28

*x=120 và y=30

*x=96 và y=32

*x=88 và y=33

*x=72 và y=36

*x=60 và y=40

*x=56 và y=42

*x=48 và y=48

*x=42 và y=56

*x=40 và y=60

*x=36 và y=72

*x=33 và y=88

*x=32 và y=96

*x=30 và y=120

*x=28 và y=168

*x=27 và y=216

*x=26 và y=312

*x=600 và y=25

*x=25 và y=600

tham khảo https://olm.vn/hoi-dap/detail/2037215608.html

#Học-tốt

31 tháng 12 2019

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

=> \(\frac{xy+yz+xz}{xyz}=1\)

=> xy + yz + xz - xyz = 0 (1)

=> y(x + z) + xy(1 - z) = 0

=> y[x + z + (1 - z).x] = 0

=> \(\orbr{\begin{cases}y=0\left(\text{loại}\right)\\x+z+x\left(1-z\right)=0\end{cases}\Rightarrow x\left(2-z\right)+z=0\Rightarrow\left(x-1\right)\left(2-z\right)=-2}\)

Lại có \(x;z\inℕ^∗\Rightarrow\hept{\begin{cases}x-1\inℕ^∗\Leftrightarrow x>1\\2-z\inℕ^∗\Leftrightarrow z< 2\end{cases}}\)(2)

Từ (1) ta có : -2 = (-2).1  = (-1).2 

Lập bảng xét các trường hợp

x - 1-121-2
2 - z2-1-21
x0(loại)32-3(loại)
z0(loại)343
y\(y\in\varnothing\)321(loại)

Vậy các cặp (x;y;z) thỏa mãn là : (3;3;3) ; (2;4;2) ; (2;2;4) ; (4;2;2)

19 tháng 3 2018

a) \(\frac{x}{7}+\frac{1}{14}=-\frac{1}{y}\)

\(\Rightarrow\frac{2x}{14}+\frac{1}{14}=\frac{-1}{y}\)

\(\Rightarrow\frac{2x+1}{14}=\frac{-1}{y}\)

\(\Rightarrow\left(2x+1\right).y=\left(-1\right).14=\left(-14\right)\)

Ta có bảng sau :

2x + 11-114-142-27-7
2x0-213-151-36-8
x0-1\(\frac{13}{2}\)\(\frac{-15}{2}\)\(\frac{1}{2}\)\(\frac{-3}{2}\)3-4
y-1414-11-77-2

Vậy \(\left(x;y\right)\in\left\{\left(-1;14\right),\left(3;-2\right),\left(0;-14\right),\left(-4;2\right)\right\}\)

b) \(\frac{x}{9}+-\frac{1}{6}=-\frac{1}{y}\)

\(\Rightarrow\frac{2x}{18}+\frac{-3}{18}=\frac{-1}{y}\)

\(\Rightarrow\frac{2x-3}{18}=\frac{-1}{y}\)

\(\Rightarrow\left(2x-3\right).y=\left(-1\right).18=\left(-18\right)\)

Ta có bảng :

2x - 31-118-183-36-69-9-22    
2x4221-15609-312-615    
x21\(\frac{21}{2}\)\(\frac{-15}{2}\)30\(\frac{9}{2}\)\(\frac{-3}{2}\)6-3\(\frac{1}{2}\)\(\frac{5}{2}\)    
y-1818-11-66-33-229-9    

Vậy \(\left(x;y\right)\in\left\{\left(2;-18\right),\left(1;18\right),\left(3;-6\right),\left(0;6\right),\left(6;-2\right),\left(-3,2\right)\right\}\)

15 tháng 5 2018

\(\frac{1}{2}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\)

\(\Leftrightarrow xy\ge4\)

\(\Rightarrow A=xy+2017\ge4+2017=2021\)

22 tháng 2 2020

\(x+y=1\Rightarrow2\sqrt{xy}\le1\Rightarrow\sqrt{xy}\le\frac{1}{2}\)

\(\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{1}{xy}\ge4\)

Áp dụng bđt cauchy cho 3 số dương:

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{xy}\ge3\sqrt[3]{\frac{1}{x^2}.\frac{1}{y^2}.\frac{1}{xy}}=3.\frac{1}{xy}\ge3.4=12\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

15 tháng 2 2018

áp dụng bdt cô si dạng " Rei' ta có

\(x+y+1\le3\sqrt[3]{xy}\)

từ đề bài ta suy ra  \(xy=\frac{1}{z}\Leftrightarrow\sqrt[3]{xy}=\frac{1}{\sqrt[3]{z}}\)

suy ra   \(3\sqrt[3]{xy}=3\sqrt[3]{\frac{1}{z}}=\frac{3}{\sqrt[3]{z}}\)

áp dụng cho các BDT còn lại

\(3\sqrt[3]{yz}=\frac{3}{\sqrt[3]{x}};3\sqrt[3]{xz}=\frac{3}{\sqrt[3]{y}}\)

suy ra  \(Q\le\frac{1}{\frac{3}{\sqrt[3]{z}}}+\frac{1}{\frac{3}{\sqrt[3]{y}}}+\frac{1}{\frac{3}{\sqrt[3]{x}}}=\frac{\sqrt[3]{z}}{3}+\frac{\sqrt[3]{y}}{3}+\frac{\sqrt[3]{x}}{3}\) Nhân ngược lên 

vậy 

\(Q\le\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{3}\)

áp dụng BDT cô si dạng "Shinra" ta có  , đặt tử số = S

\(S=\sqrt[3]{z}+\sqrt[3]{y}+\sqrt[3]{x}\ge3\sqrt[3]{\sqrt[3]{xyz}}\)

có xyz=1 vậy    \(3\sqrt[3]{\sqrt[3]{xyz}}=3\)

 suy ra \(S\ge3\) ( ngược dấu loại )

cách 2 áp dụng BDT cosi dạng đặc biệt " Gedou rinne Tensei " ta được

lưu ý " Gedou Rinne Tensei" chỉ dùng lúc nguy cấp + tán gái + thể hiện  và chỉ lừa được những thằng ngu 

không nên dùng trc mặt thầy cô giáo :) .

\(\sqrt[3]{x.1.1}\le\frac{\left(x+2\right)}{3}\)

tương tự vs các BDt còn lại và đặt tử số = S ta được

\(S\le\frac{\left(x+2+y+2+z+2\right)}{3}=\frac{\left(x+y+z+6\right)}{3}=3\) 

thay \(S\le3\) vào biểu thức ta được

\(Q\le\frac{3}{3}=1\)

vây Max Q là 1 dấu = xảy ra khi x=y=z=1

16 tháng 2 2018

Đệch, nói luôn côsi 3 số cho r

Cái này ae nào ko hiểu msg tui, tui dùng điểm rơi giải đc r, dễ hiểu hơn