K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔACD và ΔABE có

\(\dfrac{AC}{AB}=\dfrac{AD}{AE}\left(\dfrac{20}{15}=\dfrac{8}{6}=\dfrac{4}{3}\right)\)

\(\widehat{CAD}\) chung

Do đó: ΔACD~ΔABE

b: Ta có: ΔACD~ΔABE

=>\(\widehat{ACD}=\widehat{ABE}\) và \(\widehat{AEB}=\widehat{ADC}\)

Xét ΔHDB và ΔHEC có

\(\widehat{HBD}=\widehat{HCE}\)

\(\widehat{DHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔHDB~ΔHEC

=>\(\dfrac{HD}{HE}=\dfrac{HB}{HC}\)

=>\(HD\cdot HC=HB\cdot HE\)

c: Ta có: AD+DB=AB

=>DB=15-8=7(cm)

Ta có: AE+EC=AC

=>EC+6=20

=>EC=14(cm)

Xét ΔADE và ΔACB có

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\left(\dfrac{8}{20}=\dfrac{6}{15}=\dfrac{2}{5}\right)\)

\(\widehat{A}\) chung

Do đó: ΔADE~ΔACB

=>\(\widehat{ADE}=\widehat{ACB}\)

mà \(\widehat{ADE}=\widehat{FDB}\)

nên \(\widehat{FDB}=\widehat{FCE}\)

Xét ΔFDB và ΔFCE có

\(\widehat{FDB}=\widehat{FCE}\)

\(\widehat{F}\) chung

Do đó: ΔFDB~ΔFCE

=>\(\dfrac{S_{FDB}}{S_{FCE}}=\left(\dfrac{BD}{CE}\right)^2=\dfrac{1}{4}\)

=>\(S_{FCE}=4\cdot S_{FDB}\)

Xét ΔADE và ΔABC co
AD/AB=AE/AC
góc A chung

=>ΔADE đồng dạng với ΔABC

Xét ΔABE và ΔACD có

AB/AC=AE/AD
góc A chung

=>ΔABE đồng dạng với ΔACD

 

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

=>ΔABC=ΔADE

b: góc DEB+góc CBA=45+45=90 độ

=>DE vuông góc BC tại H

c: Sửa đề: H là giao của DE với BC

Xét ΔHEB vuông tại H có góc HEB=45 độ

nên ΔHEB vuông cân tại H

=>HE=HB