K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2016

m=2 thi pt thoa man 2 nghiem tren

\(\text{Δ}=\left[-2\left(m-2\right)\right]^2-4\cdot1\cdot\left(3m-3\right)\)

\(=\left(2m-4\right)^2-4\left(3m-3\right)\)

\(=4m^2-16m+16-12m+12\)

\(=4m^2-28m+28\)

Để phương trình có hai nghiệm thì Δ>=0

=>\(4m^2-28m+28>=0\)

\(\Leftrightarrow4m^2-2\cdot2m\cdot7+49-21>=0\)

=>\(\left(2m-7\right)^2>=21\)

=>\(\left[{}\begin{matrix}2m-7>=\sqrt{21}\\2m-7< =-\sqrt{21}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>=\dfrac{7+\sqrt{21}}{2}\\m< =\dfrac{7-\sqrt{21}}{2}\end{matrix}\right.\)

\(\left|x_1\right|-\left|x_2\right|=6\)

=>\(\left(\left|x_1\right|-\left|x_2\right|\right)^2=36\)

=>\(x_1^2+x_2^2-2\left|x_1x_2\right|=36\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=36\)

=>\(\left(-2m+4\right)^2-2\left(3m-3\right)-2\left|3m-3\right|=36\)

=>\(4m^2-16m+16-6m+6-6\left|m-1\right|=36\)

=>\(4m^2-22m+22-36=6\left|m-1\right|\)

=>\(6\left|m-1\right|=4m^2-22m-14\)(1)

TH1: m>=1

(1) tương đương với \(4m^2-22m-14=6\left(m-1\right)\)

=>\(4m^2-22m-14-6m+6=0\)

=>\(4m^2-28m-8=0\)

=>\(m^2-7m-2=0\)

=>\(\left[{}\begin{matrix}m=\dfrac{7+\sqrt{57}}{2}\left(nhận\right)\\m=\dfrac{7-\sqrt{57}}{2}\left(loại\right)\end{matrix}\right.\)

TH2: m<1

(1) tương đương với: \(4m^2-22m-14=6\left(1-m\right)\)

=>\(4m^2-22m-14=6-6m\)

=>\(4m^2-16m-20=0\)

=>m^2-4m-5=0

=>(m-5)(m+1)=0

=>\(\left[{}\begin{matrix}m-5=0\\m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=5\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)

15 tháng 5 2022

\(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+2\right)\)

   \(=4m^2+8m+4-4m^2-8\)

   \(=8m-4\)

Để pt có 2 nghiệm thì \(\Delta>0\)

                                    \(\Leftrightarrow8m-4>0\)

                                      \(\Leftrightarrow m>\dfrac{1}{2}\)

Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)

\(x_1^2+x_1x_2+2=3x_1+x_2\)

\(\Leftrightarrow x_1^2+m^2+2+2=2x_1+2\left(m+1\right)\)

\(\Leftrightarrow x_1^2-2x_1+4+m^2-2m-2=0\)

\(\Leftrightarrow x_1^2-2x_1+2+m^2-2m=0\)

\(\Leftrightarrow x_1^2-2x_1+1+m^2-2m+1=0\)

\(\Leftrightarrow\left(x_1-1\right)^2+\left(m-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=1\\m=1\end{matrix}\right.\)(tm)

Vậy \(m=1\)

 

15 tháng 5 2022

sai rồi bạn ơi

Ta có: \(x^2-4x+m+1=0\)

a=1; b=-4; c=m+1

\(\Delta=b^2-4ac\)

\(=\left(-4\right)^2-4\cdot1\cdot\left(m+1\right)\)

\(=16-4m-4\)

\(=-4m+12\)

Để phương trình (1) có hai nghiệm x1,x2 thì \(\Delta\ge0\)

\(\Leftrightarrow-4m+12\ge0\)

\(\Leftrightarrow-4m\ge-12\)

hay \(m\le3\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m+1}{1}=m+1\end{matrix}\right.\)

Ta có: \(\left|x_1-x_2\right|=3m-4\)

\(\Leftrightarrow\sqrt{\left(x_1-x_2\right)^2}=3m-4\)

\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=3m-4\)

\(\Leftrightarrow\sqrt{4^2-4\left(m+1\right)}=3m-4\)

\(\Leftrightarrow\sqrt{16-4m-4}=3m-4\)

\(\Leftrightarrow\sqrt{-4m+12}=3m-4\)

\(\Leftrightarrow-4m+12=\left(3m-4\right)^2\)

\(\Leftrightarrow-4m+12=9m^2-24m+16\)

\(\Leftrightarrow9m^2-24m+16+4m-12=0\)

\(\Leftrightarrow9m^2-20m+4=0\)(2)

a=9; b=-20; c=4

\(\Delta=b^2-4ac\)

\(=\left(-20\right)^2-4\cdot9\cdot4=400-144=256\)

Vì \(\Delta>0\) nên phương trình (2) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{20-16}{18}=\dfrac{4}{18}=\dfrac{2}{9}\left(nhận\right)\\m_2=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{20+16}{18}=\dfrac{36}{18}=2\left(nhận\right)\end{matrix}\right.\)

Vậy: \(m\in\left\{\dfrac{2}{9};2\right\}\)

26 tháng 5 2021

\(f\left(x\right)=x^2-2\left(m+5\right)x+m^2+4m-3=0\)

Phương trình cho có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow6m+28>0\Leftrightarrow m>-\frac{14}{3}\left(1\right)\)

ycbt\(\Leftrightarrow\hept{\begin{cases}-2< m+5< 4\\f\left(-2\right)>0\\f\left(4\right)>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-7< m< -1\\m^2+8m+21>0\\m^2-4m-27>0\end{cases}}\Leftrightarrow-7< m< 2-\sqrt{31}\left(2\right)\)

Từ (1),(2) suy ra \(-\frac{14}{3}< m< 2-\sqrt{31}.\)

9 tháng 3 2019

x 2  - 3x + m - 5 = 0

a = 1; b = -3; c = m – 5

Δ = b 2 - 4ac = - 3 2 - 4(m - 5) = 29 - 4m

Phương trình có 2 nghiệm phân biệt x 1 ; x 2  khi và chỉ khi

Δ > 0 ⇔ 29 - 4m > 0 ⇔ m < 29/4

Theo định lí Vi-et ta có:

x 1 ; x 2  = c/a = m - 5

Theo bài ra

x 1 ; x 2 = 4 ⇔ m - 5 = 4 ⇔ m = 9 (Không TMĐK m < 29/4)

Vậy không tồn tại m thỏa mãn đề bài.

NV
8 tháng 3 2023

a. Em tự giải

b. Pt có 2 nghiệm khi \(\Delta=9-4\left(m-4\right)\ge0\Rightarrow m\le\dfrac{25}{4}\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=m-4\end{matrix}\right.\)

c.

\(x_1^3+x_2^3=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=8\)

\(\Leftrightarrow\left(-3\right)^3-3.\left(-3\right).\left(m-4\right)=8\)

\(\Leftrightarrow m=\dfrac{71}{9}\)

c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)

\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)

\(=4m^2+8m+4-8m-4\)

\(=4m^2\ge0\forall m\)

Do đó, phương trình luôn có nghiệm

Áp dụng hệ thức Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=2m+1\)

\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)

\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)

\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)

\(\Leftrightarrow16m^2-10m-17=0\)

\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)

2 tháng 4 2021

giúp e câu b nx