cho 0≤a,b,c≤2 thỏa mãn a+b+c=3
cm a^2+b^2+c^2≤5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b+c=0⇔a3+b3+c3=3abca+b+c=0⇔a3+b3+c3=3abc (cái này tự chứng minh nhá, dễ)
⇒3abc(a2+b2+c2)=(a3+b3+c3)(a2+b2+c2)=a5+b5+c5+a3(b2+c2)+b3(c2+a2)+c3(a2+b2)⇒3abc(a2+b2+c2)=(a3+b3+c3)(a2+b2+c2)=a5+b5+c5+a3(b2+c2)+b3(c2+a2)+c3(a2+b2)
Lại có b+c=−a⇔b2+c2=(b+c)2−2bc=a2−2bcb+c=−a⇔b2+c2=(b+c)2−2bc=a2−2bc
Tương tự c2+a2=b2−2ac,a2+b2=c2−2abc2+a2=b2−2ac,a2+b2=c2−2ab
Nên 3abc(a2+b2+c2)=a5+b5+c5+a3(a2−2bc)+b3(b2−2ac)+c3(c2−2ab)=2(a5+b5+c5)−2abc(a2+b2+c2)
Ta có
\(\left(a^2+b^2+c^2\right)\left(a^3+b^3+c^3\right)=a^5+a^2b^3+a^2c^3+a^3b^2+b^5+b^2c^3+a^3c^2+b^3c^2+c^5\)
\(\Rightarrow a^5+b^5+c^5=\left(a^2+b^2+c^2\right)\left(a^3+b^3+c^3\right)-a^2b^2\left(a+b\right)-b^2c^2\left(b+c\right)-a^2c^2\left(a+c\right)\)
Do a+b+c=0
=> a+b=-c; b+c=-a; a+c=-b
\(\Rightarrow a^5+b^5+c^5=\left(a^2+b^2+c^2\right)\left(a^3+b^3+c^3\right)+a^2b^2c+ab^2c^2+a^2bc^2=\)
\(=\left(a^2+b^2+c^2\right)\left(a^3+b^3+c^3\right)+abc\left(ab+bc+ac\right)=\)
\(=\left(a^2+b^2+c^2\right)\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3\right]+abc\left(ab+bc+ac\right)=\)
\(=\left(a^2+b^2+c^2\right).\left[\left(-c^3\right)-3ab.\left(-c\right)+c^3\right]+abc\left(ab+bc+ac\right)=\)
\(=\left(a^2+b^2+c^2\right).3abc+abc\left(ab+bc+ab\right)=\)
\(=abc.\left[3\left(a^2+b^2+c^2\right)+ab+bc+ac\right]=\)
\(=abc\left[\dfrac{5}{2}.\left(a^2+b^2+c^2\right)+\dfrac{a^2+b^2+c^2+2ab+2bc+2ac}{2}\right]=\)
\(=abc.\left[\dfrac{5}{2}.\left(a^2+b^2+c^2\right)+\dfrac{\left(a+b+c\right)^2}{2}\right]=\)
\(=abc.\dfrac{5}{2}.\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\dfrac{a^5+b^5+c^5}{5}=abc.\dfrac{a^2+b^2+c^2}{2}\left(đpcm\right)\)
BĐT cần chứng minh tương đương với
\(\left(1-\frac{a^5-a^2}{a^5+b^2+c^2}\right)+\left(1-\frac{b^5-b^2}{b^5+c^2+a^2}\right)+\left(1-\frac{c^5-c^2}{c^5+a^2+b^2}\right)\le3\)
hay \(\frac{1}{a^5+b^2+c^2}+\frac{1}{b^5+c^2+a^2}+\frac{1}{c^5+a^2+b^2}\le\frac{3}{a^2+b^2+c^2}\)
Từ \(abc\ge1\) ta có:
\(\frac{1}{a^5+b^2+c^2}\le\frac{1}{\frac{a^5}{abc}+b^2+c^2}=\frac{1}{\frac{a^4}{bc}+b^2+c^2}\)
\(\le\frac{1}{\frac{2a^4}{b^2+c^2}+b^2+c^2}=\frac{b^2+c^2}{2a^4+\left(b^2+c^2\right)^2}\)
Do \(4u^2+v^2\ge4uv\Leftrightarrow4u^2+v^2\ge\frac{2}{3}\left(u+v\right)^2\)nên
\(2a^4+\left(b^2+c^2\right)^2\ge\frac{2}{3}\left(a^2+b^2+c^2\right)^2\)
Suy ra \(\frac{1}{a^5+b^2+c^2}\le\frac{3\left(b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)^2}\)
Tương tự ta có \(\frac{1}{b^5+c^2+a^2}\le\frac{3\left(c^2+a^2\right)}{2\left(a^2+b^2+c^2\right)^2}\)
và \(\frac{1}{c^5+a^2+b^2}\le\frac{3\left(a^2+b^2\right)}{2\left(a^2+b^2+c^2\right)^2}\)
Cộng ba vế của các BĐT trên ta được
\(\frac{1}{a^5+b^2+c^2}+\frac{1}{b^5+c^2+a^2}+\frac{1}{c^5+a^2+b^2}\le\frac{3}{a^2+b^2+c^2}\)
Vậy \(\frac{a^5-a^2}{a^5+b^2+c^2}+\frac{b^5-b^2}{b^5+c^2+a^2}+\frac{c^5-c^2}{c^5+a^2+b^2}\ge0\)
(Dấu "="\(\Leftrightarrow a=b=c=1\))
Vì \(0\le a,b,c\le2\)
\(\Rightarrow\left(2-a\right)\left(2-b\right)\left(2-c\right)\le0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)-4\left(a+b+c\right)-abc+8\le0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)\le4+abc\le4\)
\(\Leftrightarrow\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\le4\)
\(\Leftrightarrow a^2+b^2+c^2\le5\left(đpcm\right)\)