cho tam giác ABC vuông cân tại A. Điểm D thuộc cạnh AB (D khác A,B). Qua B vẽ đường thẳng vuông góc với CD tại H đường thẳng BH cắt đường thẳng CA tại E. Chứng minh rằng
a, tứ giác AHBC nội tiếp.
b. EA.EC=EH.EB.
c. AD=AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét tứ giác $AHBC$ có:
$\widehat{BHC}=\widehat{BAC}=90^0$ và cùng nhìn cạnh $BC$ nên $AHBC$ là tứ giác nội tiếp.
a: XétΔIDC vuông tại D và ΔIAB vuông tại A có
góc I chung
=>ΔIDC đồng dạng với ΔIAB
b: ΔIDC đồng dạng với ΔIAB
=>ID/IA=IC/IB
=>ID/IC=IA/IB
=>ΔIDA đồng dạng với ΔICB
=>góc IDA=góc ICB=45 độ
a: BH vuông góc CA
CD vuông góc CA
=>BH//CD
b: CH vuông góc AB
AB vuông góc BD
=>BD//Ch
Xét tứ giác BHCD có
BH//CD
BD//CH
=>BHCD là hbh
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
a/ A và H cùng nhìn BC dưới 1 góc vuông => A và H nằm trên cùng 1 đường tròn đường kính BC
=> Tứ giác AHBC là tứ giác nội tiếp
b/ Xét tam giác vuông ABE và tam giác vuông HCE có
BE vuông góc với CH
AB vuông góc với CE
=> ^ABE=^HCE (góc có cạnh tương ứng vuông góc)
=> tam giác ABE đồng dạng với tam giác HCE
=> \(\frac{EA}{EH}=\frac{EB}{EC}\Rightarrow EA.EC=EH.EB\)
c/ Xét tam giác EBC có
BA vuông góc CE
CH vuông góc với BE
=> D là trực tâm của tam giác EBC => ED là đường cao của tam giác EBC => ED vuông góc với BC
Ta có:
ED vuông góc với BC
CE vuông góc với AB
=> ^CED = ^ABC (góc có cạnh tương ứng vuông góc)
^ABC=^ACB=(180 - ^BAC)/2 = 45
=> ^CED=45
Xét tam giác vuông ADE có ^ADE=(180 - CED - DAE) = (180 - 45 - 90) = 45
=> ^CED = ^ADE
=> Tam giác ADE cân tại A => AD=AE