Cho tam giác ABC cân (CA = CB) và góc C = 800. Trong tam giác sao cho MBA = 30o và MAB = 10o. Tính góc MAC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABMΔ��� có :
ˆMAB=ˆMBA(gt)���^=���^(��)
=> ΔABMΔ��� cân tại M
Do đó ta có : ˆAMB=180o−(ˆMAB+ˆMBA)���^=180�−(���^+���^) (tổng 3 góc của 1 tam giác)
=> ˆAMB=180o−2.30o=120o���^=180�−2.30�=120�
Ta có : ˆBAC=ˆMAB−ˆMAC���^=���^−���^
=> 90o=30o−ˆMAC90�=30�−���^
=> ˆMAC=90o−60o���^=90�−60�
=> ˆMAC=60o���^=60�
b) Có : ˆAMB+ˆAMC=180o���^+���^=180� (kề bù)
=> 120o+ˆAMC=180o120�+���^=180�
=> ˆAMC=180o−120o���^=180�−120�
=> ˆAMC=60o���^=60�
Xét ΔAMCΔ��� có :
ˆMAC=ˆAMC(=60o)���^=���^(=60�)
=> ΔAMCΔ��� cân tại A
Mà có : ˆACM=180o−(ˆMAC+ˆAMC)���^=180�−(���^+���^) (tổng 3 góc của 1 tam giác)
=> ˆACM=180o−2.60o=60o���^=180�−2.60�=60�
Thấy : ˆAMC=ˆMAC=ˆACM=60o���^=���^=���^=60�
Do đó ΔAMCΔ��� là tam giác đều (đpcm)
- Ta có : Do ΔAMBΔ��� cân tại A (cmt - câu a) (1)
=> BM=AM��=�� (tính chất tam giác cân)
Mà có : ΔAMCΔ��� cân tại M (cmt)
=> AM=MC��=�� (tính chất tam giác cân) (2)
- Từ (1) và (2) => BM=MC(=AC)��=��(=��)
Mà : BM=12BC��=12��
Do vậy : AC=12BC
a: Xét ΔMAB có góc MAB=góc MBA
nên ΔMAB cân tại M
=>góc AMB=180-2*30=120 độ và góc MAC=90-30=60 độ
b: Xét ΔMAC có góc MAC=góc MCA=60 độ
nên ΔMAC đều
Ta có hình vẽ sau:
Vẽ hình trước nhé, bài làm để sau cái đã~
Hình như từng làm bài này rồi
Đợi nháp lại~
Chết cha
cái hình sai rồi -.-' xin lỗi
Ko vẽ hình nữa
tự vẽ nhaT.T
\(\Delta\)ABC cân,ACB=100 độ=>CAB=CBA=40 độ
trên AB lấy AE=AD.cần chứng minh AE+DC=AB (hoặc EB=DC)
\(\Delta\)AED cân,DAE=40 độ:2=20 độ
=>ADE=AED=80 độ=40 độ+EDB (góc ngoài của \(\Delta\)EDB)
=>EDB=40 độ =>EB=ED (1)
trên AB lấy C' sao cho AC'=AC
\(\Delta\)CAD=\(\Delta\)C'AD (c.g.c)
=>AC,D=100 độ và DC,E=80 độ
vậy \(\Delta\)DC'E cân =>DC=ED (2)
từ (1) và (2) có EB=DC'
mà DC'=DC.vậy AD+DC=AB