x+80-10=90
x=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=89 nên x+1=90
\(f\left(x\right)=x^7-x^6\left(x+1\right)+x^5\left(x+1\right)-x^4\left(x+1\right)+...+x\left(x+1\right)+1928\)
\(=x^7-x^7-x^6+x^6-...+x^2+x+1928\)
=x+1928=89+1928=2017
\(f\left(x\right)=x^7-90x^6+90x^5-90x^4+...+90x+1928\)\(\Rightarrow f\left(89\right)=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5\)\(-\left(x+1\right)x^4+...+\left(x+1\right)x+1928\)
\(\Rightarrow f\left(89\right)=x^7-x^7-x^6+x^6+x^5-x^5\)\(-x^4+...+\)\(x^2+x+1928\)\(=89+1928=2017\)
\(90x-6750=75x-x^2\)
\(\Leftrightarrow180x-6750=75x-x^2\)
\(\Leftrightarrow x^2+105x-6750=0\)
\(\Leftrightarrow x^2-45x+150x-6750=0\)
\(\Leftrightarrow\left(x-45\right)\left(x+150\right)=0
\)
\(\Leftrightarrow\left[{}\begin{matrix}x-45=0\\x+150=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=45\\x=-150\end{matrix}\right.\)
Vậy x=45 hoặc x=-150
và dòng dưới nữa sao từ hằng đẳng thức (A-B)^3 lại thành A^3-B^3 vậy
\(=\left(3x+15\right)^2-\left(x-7\right)^2=\left(4x+8\right)\left(2x+22\right)=8\left(x+2\right)\left(x+11\right)\)
(x-7)^2 = x^2-14x+49
<=> 9x^2+90x+225 -x^2+14x-49
= 8x^2+104x+176
= 8(x^2+13+22)
<=> 8(x+2)(x+11)
\(=x^4-9x^3+9x^3-81x^2-9x^2+81x+10x-90\)
\(=\left(x-9\right)\left(x^3+9x^2-9x+10\right)\)
\(=\left(x-9\right)\left(x^3+10x^2-x^2-10x+x+10\right)\)
\(=\left(x-9\right)\left(x+10\right)\left(x^2-x+1\right)\)
9x2+90x+225-(x-7)2
=(3x+15)2-(x-7)2
=(3x+15-x+7)(3x+15+x-7)
=(2x+22)(4x+8)
=2 (x+11)4 (x+2)
=8 (x+11)(x+2)
x + 80 - 10 = 90
x = 90 - ( 80 - 10 )
x = 90 - 70
x = 20
x+80-10=90
x=90+10-80
x=100-80
x=20