Cho bất phương trình x2-6x +2(m+2)|x-3| +m2 +4m +12 >0
có bao nhiêu giá trị nguyên của m ϵ [-10;10] để bất phương tình đúng với mọi xϵ (-2;5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt
Suy ra
Ta có
Ta có bảng biến thiên
Từ bảng biến thiên ta suy ra
Khi đó bất phương trình trở thành:
Xét hàm số với
Ta có
Suy ra hàm số f(t) nghịch biến trên
Chọn C.
a.
Pt có 2 nghiệm pb khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta'=\left(m+3\right)^2-\left(m+1\right)\left(-m+2\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\2m^2+7m+7>0\left(\text{luôn đúng}\right)\end{matrix}\right.\)
\(\Rightarrow m\ne-1\)
b.
BPT vô nghiệm khi \(\left(m^2-4m-5\right)x^2+2\left(m-5\right)-1< 0\) nghiệm đúng với mọi x
- Với \(m=-1\) ko thỏa mãn
- Với \(m=5\) thỏa mãn
- Với \(m\ne\left\{-1;5\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}m^2-4m-5< 0\\\Delta'=\left(m-5\right)^2+m^2-4m-5< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 5\\\left(m-5\right)\left(2m-4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 5\\2< m< 5\end{matrix}\right.\) \(\Rightarrow2< m< 5\)
Kết hợp lại ta được: \(2< m\le5\)
Chọn C
nên hàm t = t (x) nghịch biến trên (-2;2)
Thay vào bất phương trình trên được:
Bất phương trình đã cho nghiệm đúng với mọi x ∈ - 2 ; 2 nếu và chỉ nếu bất phương trình
nghiệm đúng với mọi t ∈ - 6 ; 2
tam thức bậc hai f t = 2 t 2 - m t + 3 m - 5 có hai nghiệm thỏa mãn
Kết hợp với m ∈ - 10 ; 10 thì m ∈ - 10 ; - 9 ; - 8
2 x 2 – (4m + 3)x + 2 m 2 – 1 = 0 (2)
Phương trình (2) có nghiệm khi và chỉ khi ∆ ≥ 0
Ta có: ∆ = - 4 m + 3 2 – 4.2(2 m 2 – 1)
= 16 m 2 + 24m + 9 – 16 m 2 + 8 = 24m + 17
∆ ≥ 0 ⇔ 24m + 17 ≥ 0 ⇔ m ≥ -17/24
Vậy khi m ≥ -17/24 thì phương trình đã cho có nghiệm.
Giải phương trình (2) theo m:
\(a.\Leftrightarrow mx^2+2mx-x+m+2=0\)
\(\Leftrightarrow mx\left(x+2\right)+\left(m+2\right)-x=0\)
\(\Leftrightarrow\left(m+2\right)\left(mx+1\right)-x=0\)
\(\Rightarrow\left\{{}\begin{matrix}m=\left(0+x\right):\left(mx+1\right)-2\\m=[\left(0+x\right):\left(m+2\right)-1]:x\end{matrix}\right.\)
\(\Leftrightarrow\left(x-3\right)^2+2\left(m+2\right)\left|x-3\right|+m^2+4m+3>0\)
Đặt \(\left|x-3\right|=t\Rightarrow0\le t< 5\)
\(\Rightarrow t^2+2\left(m+2\right)t+m^2+4m+3>0\) ;\(\forall t\in[0;5)\)
\(\Leftrightarrow\left(t+m+1\right)\left(t+m+3\right)>0\)
\(\Rightarrow-m-3< t< -m-1\)
Pt nghiệm đúng với mọi \(t\in[0;5)\) khi và chỉ khi
\(\left\{{}\begin{matrix}0>-m-3\\5\le-m-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m\le-5\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
Chỗ này mà không phân tích được thành nhân tử thì làm cách phương trình \(f\left(t\right)=0\) có nghiệm thỏa mãn \(t_1\le0< 5< t_2\) đúng không ạ.