K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BC=5cm

nên AM=2,5cm

17 tháng 11 2021

a. Pytago: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

AD là trung tuyến ứng cạnh huyền BC nên \(AD=\dfrac{1}{2}BC=2,5\left(cm\right)\)

b. Vì \(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\) nên AMDN là hcn

Vậy AD=MN

c. ABC vuông cân A thì AD là trung tuyến cũng là p/g

Do đó AMDN là hình thoi(1)

Lại có D là trung điểm BC,DM//AC(⊥AB) nên M là trung điểm AB

Cmtt ta được N là trung điểm AC

Mà AB=AC nên AM=AC

Kết hợp (1) ta được AMDN là hình vuông

24 tháng 10 2021

a: Xét tứ giác AEMF có

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

24 tháng 10 2021

b: \(AM=\dfrac{BC}{2}=\dfrac{\sqrt{3^2+4^2}}{2}=2.5\left(cm\right)\)

5 tháng 11 2017

+ Ta có: D M C ^ = D M E ^ + E M C ^

Mặt khác: D M C ^ = A B C ^ + B D M ^ (góc ngoài tam giác)

Mà: D M E ^ = A B C ^ (gt) nên B D M ^ = E M C ^

+ Ta có: A B C ^ = A C B ^ (ΔABC cân tại A) và B D M ^ = E M C ^ (cmt)

=> ΔBDM ~ ΔCME (g - g)

=> B D C M = B M C E => BD.CE = CM.BM

Lại có M là trung điểm của BC và BC = 2a => BM = MC = a

=> BD.CE = a 2 không đổi

Đáp án: C

a) Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Vậy: AC=4cm

b)Xét ΔADC vuông tại A và ΔABC vuông tại A có 

CA chung

AD=AB(gt)

Do đó: ΔADC=ΔABC(hai cạnh góc vuông)

c) Xét ΔEMD và ΔBMC có 

\(\widehat{EDM}=\widehat{BCM}\)(hai góc so le trong, ED//BC)

MD=MC(M là trung điểm của CD)

\(\widehat{EMD}=\widehat{BMC}\)(hai góc đối đỉnh)

Do đó: ΔEMD=ΔBMC(g-c-g)

Suy ra: ED=BC(hai cạnh tương ứng)

mà BC=CD(ΔCDA=ΔCBA)

nên ED=CD

hay ΔCDE cân tại D

14 tháng 12 2021

\(a,\) Vì M là trung điểm AD và BC nên ABDC là hình bình hành

Mà \(\widehat{BAC}=90^0\) nên ABDC là hình chữ nhật

\(b,\) Vì H,M là trung điểm AI và AD nên HM là đường trung bình \(\Delta ADI\)

\(\Rightarrow DI\text{//}HM\) hay \(DI//BC\)

Do đó BIDC là hình thang

Vì I đx với A qua BC nên \(AB=BI\) và BC là trung trực AI

Do đó \(\Delta ABI\) cân tại B

Suy ra BC là trung trực cũng là phân giác

Do đó \(\widehat{ABC}=\widehat{CBI}\left(1\right)\)

Lại có ABDC là hcn nên \(\widehat{BCD}+\widehat{ACB}=\widehat{ACD}=90^0\)

Mà \(\Delta ABC\bot A\) nên \(\widehat{ABC}+\widehat{ACB}=90^0\)

\(\Rightarrow\widehat{BCD}=\widehat{ABC}\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\widehat{CBI}=\widehat{BCD}\)

Vậy BIDC là hình thang cân

30 tháng 4 2020

ABDC E

a) Vì AD phân giác BACˆBAC^ (gt)

=> ABAC=BDDCABAC=BDDC (t/c đường p/g ΔΔ )

=> ABAC+AB=BDBD+DCABAC+AB=BDBD+DC (t/c TLT)

=> 1212+20=BDBC1212+20=BDBC

=> 1232=BD281232=BD28

=> BD=12⋅2832=10,5BD=12⋅2832=10,5 cm

Ta có: BD+DC=BCBD+DC=BC (D ∈∈ BC)

=> DC=28−10,5=17,5DC=28−10,5=17,5 cm

Xét ΔΔ ABC có: DE // AB (gt)

=> DEAB=DCBCDEAB=DCBC (hệ qủa ĐL Ta-lét)

=> DE=ABDCBC=12⋅17,528=7,5DE=AB⋅DCBC=12⋅17,528=7,5 cm

4 tháng 5 2020

Nguồn : hh

~ Chúc you học tốt ~

:)))

8 tháng 5 2022

a) Có: △ABC cân tại A => AB=AC

         và AI là tia p/g của góc ABC => góc BAI= góc CAI

Xét △ABI và △ ACI có

            AI chung

       góc BAI= góc CAI

       AB=AC

=>△ABI = △ ACI (c.g.c)

b)Có : △ABC cân tại A ; AI là tia p/g của góc ABC

=> AI cũng là đường trung tuyến của  △ABC

có :D là trung điểm của AC 

=> BD là đường trung tuyến của  △ ABC

trong  △ABC có 

    AI là đường trung tuyến thứ nhất

   BD là đường trung tuyến thứ hai

Mà 2 đường này cắt nhau tại M

=> M là trọng tâm của △ABC

BI=CI=BC/2=3(cm)

Có : △ABC cân tại A ; AI là tia p/g của góc ABC

=> AI cũng là đường cao

=> AI⊥BC

=> △ABI vuông tại I 

=> AI^2+ BI^2= AB^2

=> AI^2+9=25

  AI^2 = 16

=> AI = 4( cm)