cho hình chữ nhật ABCD có diện tích là 4 nhaan căn 3 cm2.kẻ AH VUÔNG GÓC VỚI BDtại H ,biết AH BẰNG căn 3 cm.tính chiều dài của hcn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 Giải
Chu vi HCN là:
(12+8).2= 40(cm)
Diện tích HCN là:
12.8= 96(cm)
Bài 2 Chu vi hình vuông là:
20.4=80(cm)
Mà chu vi hình vuông bằng chu vi HCN nên:
Chiều rộng HCN là:
(80:2) -25=15(cm)
Diện tích HCN là:
15.25=375(cm)
Bài 3 Độ dài cạnh BC là:
120:10.2=24(cm)
Bài 4 Diện tích tam giác ABC là:
( 5.8):2 = 20(cm)
Chúc bn hok tốt~~
Diện tích là:
\(\left(720+\dfrac{4}{5}\sqrt{5}\right)\cdot\sqrt{5}=720\sqrt{5}+4\left(cm^2\right)\)
=>Độ dài cạnh hình vuông là:
\(\sqrt{720\sqrt{5}+4}\simeq40,17\left(cm\right)\)
Diện tích tam giác vuông ABD vuông tại A được tính theo 2 cách:
\(S_{ABD}=\frac{AB\times AD}{2}=\frac{AH\times BD}{2}=\frac{S_{ABCD}}{2}=\frac{4\sqrt{3}}{2}\)
=> \(AH\times BD=4\sqrt{3}\)
=> \(BD\times\sqrt{3}=4\sqrt{3}\)
=> \(BD=4\left(cm\right)\)
Tam giác AHB đồng dạng tam giác DHA theo trường hợp góc - góc nên suy ra:
\(\frac{AH}{HD}=\frac{BH}{AH}\) => \(AH^2=BH\times DH=\left(BD-DH\right)\times DH\)
=> \(\left(\sqrt{3}^2\right)=3=\left(4-DH\right)\times DH\)
=> \(4DH-DH^2-3=0\)
=> \(-\left(DH^2-4DH+3\right)=0\)
=> \(DH^2-4DH+3=0\)
=> \(DH^2-DH-3DH+3=0\)
=> \(DH\left(DH-1\right)-3\left(DH-1\right)=0\)
=> \(\left(DH-1\right)\left(DH-3\right)=0\)
Với trường hợp DH=1 (cm) thì theo định lí Pytago, ta sẽ tính được AD=2(cm)
Với trường hợp DH=3(cm) thì theo định lí Pytago, ta sẽ tính được \(AD=\sqrt{12}\left(cm\right)\)
Vậy độ dài chiều dài của hình chữ nhật đó là \(\sqrt{12}\left(cm\right)\)