K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2022

Ta có \(\sqrt{9+4\sqrt{2}}=\sqrt{8+2.2\sqrt{2}+1}=\sqrt{\left(2\sqrt{2}\right)^2+2.2\sqrt{2}.1+1}=\sqrt{\left(2\sqrt{2}+1\right)^2}=2\sqrt{2}+1\)

Vậy \(\sqrt{2+\sqrt{9+4\sqrt{2}}}=\sqrt{2+\left(2\sqrt{2}+1\right)}=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}\)\(=\sqrt{2}+1\)

Từ đó \(\sqrt{5-2\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{5-2\left(\sqrt{2}+1\right)}=\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}\)\(=\sqrt{2}-1\)

Vậy \(T=\frac{\sqrt{2}-1}{\sqrt{2}-1}=1\), vậy ta có đpcm

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\) 2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau: a) M-N b) \(M^3-N^3\) 3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\) và \(x\ne3\)) 4. Chứng minh:...
Đọc tiếp

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\)

2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau:

a) M-N

b) \(M^3-N^3\)

3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\)\(x\ne3\))

4. Chứng minh: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0 ; b > 0)

5. Chứng minh: \(\sqrt{9+4\sqrt{2}}=2\sqrt{2}+1\) ; \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\) ; \(3-2\sqrt{2}=\left(1-\sqrt{2}\right)^2\)

6. Chứng minh: \(\left(\frac{1}{2\sqrt{2}-\sqrt{7}}-\left(3\sqrt{2}+\sqrt{17}\right)\right)^2=\left(\frac{1}{2\sqrt{2}-\sqrt{17}}-\left(2\sqrt{2}-\sqrt{17}\right)\right)^2\)

7. Chứng minh đẳng thức: \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)

8.Chứng minh: \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)

9. Chứng minh rằng: \(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\)

10. \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\) ; \(\frac{7}{5}< \frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}< \frac{29}{30}\)

0
27 tháng 7 2020

Trả lời:

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-12\sqrt{5}+9}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{5}+1}\)

\(A=\sqrt{1}\)

\(A=1\)

\(B=\frac{\left(5+2\sqrt{6}\right).\left(49-20\sqrt{6}\right).\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{\left(3+2\sqrt{6}+2\right).\left(49-20\sqrt{6}\right).\sqrt{3-2\sqrt{6}+2}}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2.\left(49-20\sqrt{6}\right).\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2.\left(49-20\sqrt{6}\right).\left(\sqrt{3}-\sqrt{2}\right)}{9\sqrt{33}-11\sqrt{2}}\)

\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right).\left(\sqrt{3}-\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right).\left(49-20\sqrt{6}\right)}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{\left(3-2\right).\left(49\sqrt{3}-60\sqrt{2}+49\sqrt{2}-40\sqrt{3}\right)}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{1.\left(9\sqrt{3}-11\sqrt{2}\right)}{9\sqrt{3}-11\sqrt{2}}\)

\(B=1\)

20 tháng 9 2020

a) Ta có: \(\sqrt{29-12\sqrt{5}}=\sqrt{20-12\sqrt{5}+9}=\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)

\(\Rightarrow\sqrt{3-\sqrt{29-12\sqrt{5}}}=\sqrt{3-\left(2\sqrt{5}-3\right)}=\sqrt{3-2\sqrt{5}+3}\)

\(=\sqrt{6-2\sqrt{5}}=\sqrt{5-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\left|\sqrt{5}-1\right|=\sqrt{5}-1\)

\(\Leftrightarrow A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)( đpcm )

26 tháng 2 2022

 Xét số hạng tổng quát ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)< \sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\sqrt{n}\cdot\frac{2}{\sqrt{n}}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)

Áp dụng vào bài tập, ta có:

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+...+\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)

\(=2-\frac{2}{\sqrt{n+1}}< 2\left(đpcm\right)\)

8 tháng 7 2020

Trả lời 

\(\frac{3\sqrt{2}+2\sqrt{2}}{\sqrt{3}+\sqrt{2}}+\frac{\sqrt{6}+6}{\sqrt{6}+1}\)

\(=\frac{\sqrt{2}.\left(3+2\right)}{\sqrt{3}+\sqrt{2}}+\frac{6+\sqrt{6}}{\sqrt{6}+1}\)

\(=\frac{5\sqrt{2}}{\sqrt{3}+\sqrt{2}}+\frac{\sqrt{6}.\left(\sqrt{6}+1\right)}{\sqrt{6}+1}\)

\(=\frac{5\sqrt{2}.\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right).\left(\sqrt{3}-\sqrt{2}\right)}+\sqrt{6}\)

\(=\frac{5\sqrt{6}-5.2}{3-2}+\sqrt{6}\)

\(=\frac{5\sqrt{6}-10}{1}+\sqrt{6}\)

\(=5\sqrt{6}-10+\sqrt{6}\)

\(=6\sqrt{6}-10\)

8 tháng 2 2018

\(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\frac{1-\sqrt{2}}{-1}+\frac{\sqrt{2}-\sqrt{3}}{-1}+\frac{\sqrt{3}-\sqrt{4}}{-1}+...+\frac{\sqrt{99}-\sqrt{100}}{-1}\)

\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{4}-...-\sqrt{99}+\sqrt{100}\)

\(=\sqrt{100}-1\)

\(=10-1\)

\(=9\)

Vì 9 chia hết cho 1; 3; 9 nên ko thể là số nguyên tố mà là hợp số.

=> ĐPCM

8 tháng 2 2018

Bạn ơi xem kĩ lại đề bài đi

12 tháng 8 2020

Ap dung \(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Ta co \(P< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2007}}-\frac{1}{\sqrt{2008}}\right)\)  

=> \(P< 2\left(1-\frac{1}{\sqrt{2008}}\right)< 2.1=2\)

Suy ra P khong phai so nguyen to