K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

f(x)=0

=>x=1/2

g(1/2)=0

=>1-1/2a+1=0

=>2-1/2a=0

=>a=4

15 tháng 3 2016

cho đa thứcF(x)xác định với mọi x thỏa mãn điều kiện f(x)+3*f(1/2)=x2. tính f(2)

cho đa thứcF(x)xác định với mọi x, biết: f(x)+x*f(-x)=x+1. tính(1)

Toán lớp 7

ai tích mình mình tích lại nh nha 

Thay x=1 vào f(x), ta được:

\(\left(m-1\right)\cdot1^2-3m\cdot1+2=0\)

\(\Leftrightarrow m-1-3m+2=0\)

\(\Leftrightarrow-2m=-1\)

hay \(m=\dfrac{1}{2}\)

4 tháng 7 2021

Ta có : 

Ta có : 

\(f\left(1\right)=\left(m-1\right)1^2-3m.1+2=0\text{⇔}-2m+1=0\text{⇔}m=\dfrac{1}{2}\)

1:

a: f(x)=2x^4+2x^3+2x^2+5x+6

g(x)=x^4-2x^3-x^2-5x+3

c: h(x)=2x^4+2x^3+2x^2+5x+6+x^4-2x^3-x^2-5x+3=3x^4+x^2+9

K(x)=f(x)-2g(x)-4x^2

=2x^4+2x^3+2x^2+5x+6-2x^4+4x^3+2x^2+10x-6-4x^2

=6x^3+15x

c: K(x)=0

=>6x^3+15x=0

=>3x(2x^2+5)=0

=>x=0

d: H(x)=3x^4+x^2+9>=9

Dấu = xảy ra khi x=0

1:

\(f\left(x\right)=g\left(x\right)\cdot p\left(x\right)\)

=>\(p\left(x\right)=\dfrac{f\left(x\right)}{g\left(x\right)}\)

\(=\dfrac{x^5-3x^4+7x^3-9x^2+8x-2}{x^2-2x+a}\)

Để P(x) tồn tại với mọi x thì \(x^2-2x+a< >0\)(2) với mọi x

Giả sử \(x^2-2x+a=0\)(1)

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot a=4-4a\)

Để phương trình (1)có nghiệm thì 4-4a>=0

=>a<=1

Do đó: Để bất phương trình (2) luôn đúng với mọi x thì a>1

Bài 3:

1:

AH=AO

=>H trùng với O

=>Tâm đường tròn ngoại tiếp ΔABC trùng với trực tâm của tam giác

=>ΔABC đều

=>\(\widehat{BAC}=60^0\)

 

NV
17 tháng 4 2021

1.

\(f\left(x\right)=2x^4+6x^3+8x^2+12x+1\)

2.

\(h\left(x\right)=\left(2x^4+6x^3+8x^2+12x+1\right)-\left(2x^4+6x^3+17x^2+12x-26\right)\)

\(=-9x^2+27\)

3.

\(h\left(x\right)=0\Leftrightarrow-9x^2+27=0\)

\(\Leftrightarrow x^2=3\Rightarrow x=\pm\sqrt{3}\)