Cho x+y+z=3. Tìm GTNN của x2+y2+z2.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
AH
Akai Haruma
Giáo viên
4 tháng 1 2021
Bạn tham khảo lời giải tại đây:
cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24
NV
Nguyễn Việt Lâm
Giáo viên
12 tháng 12 2020
\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{49}{16}\)
\(M_{min}=\dfrac{49}{16}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{\sqrt{7}};\dfrac{2}{\sqrt{14}};\dfrac{2}{\sqrt{7}}\right)\)
NV
Nguyễn Việt Lâm
Giáo viên
12 tháng 12 2020
\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{7}{4}\)
\(M_{min}=\dfrac{7}{4}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{\sqrt{2}};1\right)\)
HA
0
ta có x+y+z=3
=> \(x^2+y^2+z^2+2xy+2yz+2zx=9\)(1)
ta có thể Cm được \(x^2+y^2+z^2>=xy+yz+xz\)
=> \(x^2+y^2+z^2+2\cdot\left(x^2+y^2+z^2\right)>=x^2+y^2+z^2+2\cdot\left(xy+yz+zx\right)=9\)
=> \(3\cdot\left(x^2+y^2+z^2\right)>=9\)
=> x^2+y^2+z^2>=3
vậy min là 3.dấu = khi x=y=z=1