ai giúp mik giải bài này với ,mik cám ơn nhiều:tìm phân số a/b thỏa mãn các điều kiện sau:4/9<a/b<10/21 và 5a-2b=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: abc = 999-a = 99-b = 9-c
Từ đó, suy ra:
999-a = 99-b = 9-c
Liệu điều này có thỏa mãn không, thưa là không vì 9-c>0 thì c<9
Vậy 99-b>0 thì b<99 và c<999
ta có abc=999-a=99-b=9-c
=>999-a=99-b=9-c
điều này có thõa này có thõa mãn không,khôngvì 9-c>0 thì c<9
vậy 99-b>0 thì b<99 và c<999
mầy học dốt quá bài vậy mà giải ko ra 124 215 365 289 214 278 235 698 789 đáp án đấy ngu
tự làm đi đừng ai giúp nhé lần này lại gặp mi nữa rồi
Lời giải:
Áp dụng BĐT AM-GM:
$P\leq \frac{ab}{2\sqrt{a^2b^2}}=\frac{ab}{2ab}=\frac{1}{2}$
Dấu "=" xảy ra khi $a=b$ (thay vào điều kiện $2b\leq ab+4\Leftrightarrow a^2+4\geq 2a$- cũng luôn đúng)
\(a^2+b⋮ab-1\Rightarrow b\left(a^2+b\right)-a\left(ab-1\right)⋮ab-1\)
\(\Rightarrow a+b^2⋮ab-1\)
Do đó, vai trò của a và b là hoàn toàn như nhau.
TH1: \(a=b\Rightarrow\dfrac{a^2+a}{a^2-1}\in Z\Rightarrow\dfrac{a}{a-1}\in Z\Rightarrow1+\dfrac{1}{a-1}\in Z\)
\(\Rightarrow a=2\Rightarrow a=b=2\)
TH2: \(b>a\Rightarrow b\ge a+1\)
Do \(a^2+b⋮ab-1\Rightarrow a^2+b\ge ab-1\) (nếu \(a< b\) ta sẽ xét với \(a+b^2⋮ab-1\) cho kết quả tương tự nên ko cần TH3 \(a>b\))
\(a^2-1+2\ge ab-b\Rightarrow\left(a-1\right)\left(a+1\right)+2\ge b\left(a-1\right)\)
\(\Rightarrow\left(a-1\right)\left(b-a-1\right)\le2\)
\(\Rightarrow\left(a-1\right)\left(b-a-1\right)=\left\{0;1;2\right\}\)
TH2.1: \(\left(a-1\right)\left(b-a-1\right)=0\Rightarrow\left[{}\begin{matrix}a=1\\b=a+1\end{matrix}\right.\)
- Với \(a=1\Rightarrow\dfrac{b+1}{b-1}\in Z\Rightarrow1+\dfrac{2}{b-1}\in Z\Rightarrow b=\left\{2;3\right\}\)
\(\Rightarrow\left(a;b\right)=\left(1;2\right);\left(1;3\right)\) (và 2 bộ hoán vị \(\left(2;1\right);\left(3;1\right)\) ứng với \(a>b\), lần sau sẽ hoán vị nghiệm luôn ko giải thích lại)
- Với \(b=a+1\Rightarrow\dfrac{a^2+a+1}{a^2+a-1}\in Z\Rightarrow1+\dfrac{2}{a^2+a-1}\in Z\)
\(\Rightarrow a^2+a-1=\left\{1;2\right\}\Rightarrow a=1\Rightarrow b=2\) giống như trên
TH2.2: \(\left(a-1\right)\left(b-a-1\right)=1\Rightarrow\left\{{}\begin{matrix}a-1=1\\b-a-1=1\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(2;4\right);\left(4;2\right)\)
TH2.3: \(\left(a-1\right)\left(b-a-1\right)=2=2.1=1.2\)
\(\Rightarrow\left(a;b\right)=\left(3;5\right);\left(5;3\right);\left(2;5\right);\left(5;2\right)\)
Vậy các bộ số thỏa mãn là: \(\left(1;2\right);\left(2;1\right);\left(1;3\right);\left(3;1\right);\left(2;2\right);\left(2;5\right);\left(5;2\right);\left(3;5\right);\left(5;3\right)\)
Theo đề ta có
28/63<a/b<30/63==>a/b=29/63
=>63a=29b=>63a-29b=0
Lại có 5a-2b=3
=>a=87/19
b=189/19
a/b=29/63
Ta có: 5a-2b=3
=> 5a=3+2b
=> \(a=\frac{3+2b}{5}\)
=> \(\frac{a}{b}=\frac{\frac{3+2b}{5}}{b}=\frac{3+2b}{5}\times\frac{1}{b}=\frac{3+2b}{5b}\)
\(\frac{4}{9}<\frac{3+2b}{5b}<\frac{10}{21}\)
\(<=>\frac{140b}{315b}<\frac{63\times\left(3+2b\right)}{315b}<\frac{150b}{315b}\)
\(<=>140b<189+126b<150b\)
\(<=>b=8;9;10;11;12;13\)
<=> b=Thử vào 5a-2b=3 để tìm a nguyên thì b=11 duy nhất thỏa mãn.
Vậy phân số cần tìm là \(\frac{5}{11}\)