K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Thay n = 4 vào pt (1) ta có

\(x^2-6x+5=0\\ ta.có.a+b+c=1-6+5=0\\ Vậy.pt.có.n_o:\\ x_1=1;x_2=\dfrac{c}{a}=5\) 

\(Ta.có:\Delta=b^2-4ac=....=-8n+48\\ Để.pt.\left(1\right).có.1.n_o.phân.biệt.thì.\Delta>0\\ \Leftrightarrow n< 6\) 

Vậy m < 6 thì pt (1) có nghiệm phân biệt \(x_1;x_2\) nên theo Vi ét ta có 

 \(x_1+x_2=\dfrac{-b}{a}=6\\ x_1x_2=\dfrac{c}{a}=2n-3\) 

Ta có  

\(x^2-6x+2n-3=0\\ \Leftrightarrow x^2-5x+2n-4=x-1\) 

Vì x1 x2 là nghiệm pt  \(x^2-6x+2n-3=0\) nên x1 x2 là nghiệm PT \(x^2-5x+2n-4=x-1\)  nên ta có 

\(x_1^2-5x+2x-4=x_1-1.và\\ x_2^2-5x_2+2n-4=x_2-1\\ \Rightarrow\left(x_1^2-5x_1+2n-4\right)\left(x_2^2-5x_2+2n-4\right)=\left(x_1-1\right)\left(x_2-1\right)\) 

\(Mà\\ \left(x_1^2-5x_1+2n-4\right)\left(x_2^2-5x_2+2n-4\right)=-4\\ Nên\left(x_1-1\right)\left(x_2-1\right)=-4\\ \Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1=-4\\ \Leftrightarrow2n-3-6+1=-4\\ \Leftrightarrow2n=4\Rightarrow n=2\left(tm\right)\\ ......\left(kl\right)\) 

 

NV
3 tháng 5 2021

\(\Delta'=9-\left(2n-3\right)>0\Leftrightarrow n< 6\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=2n-3\end{matrix}\right.\)

Do \(x_1;x_2\) là nghiệm nên:

\(\left\{{}\begin{matrix}x_1^2-6x_1+2n-3=0\\x_2^2-6x_2+2n-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1^2-5x_1+2n-4=x_1-1\\x_2^2-5x_2+2n-4=x_2-1\end{matrix}\right.\)

Thay vào bài toán:

\(\left(x_1-1\right)\left(x_2-1\right)=-4\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+5=0\)

\(\Leftrightarrow2n-3-6+5=0\Leftrightarrow n=2\)

10 tháng 5 2021

Cho mình hỏi lại ở chỗ hpt ạ

 

a: Thay m=1 vào pt, ta được:

\(x^2-x-2=0\)

=>(x-2)(x+1)=0

=>x=2 hoặc x=-1

b: \(\text{Δ}=\left(-m\right)^2-4\left(2m-4\right)\)

\(=m^2-8m+16\)

\(=\left(m-4\right)^2\)

Để phươg trình có hai nghiệm phân biệt thì m-4<>0

hay m<>4

Theo đề, ta có: \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(-m\right)^2-2\left(2m-4\right)\)

\(=m^2-4m+8\)

\(=\left(m-2\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi m=2

23 tháng 12 2017

a, x 2 − 2 ( m + 1 ) x + m 2 + m − 1 = 0 (1)

Với m = 0, phương trình (1) trở thành:

  x 2 − 2 x − 1 = 0 Δ ' = 2  ;  x 1 , 2 = 1 ± 2

Vậy với m = 2 thì nghiệm của phương trình (1) là  x 1 , 2 = 1 ± 2

b) Δ ' = m + 2

Phương trình (1) có hai nghiệm phân biệt  ⇔ m > − 2

Áp dụng hệ thức Vi-ét, ta có:  x 1 + x 2 = 2 ( m + 1 ) x 1 x 2 = m 2 + m − 1

Do đó:

     1 x 1 + 1 x 2 = 4 ⇔ x 1 + x 2 x 1 x 2 = 4 ⇔ 2 ( m + 1 ) m 2 + m − 1 = 4 ⇔ m 2 + m − 1 ≠ 0 m + 1 = 2 ( m 2 + m − 1 ) ⇔ m 2 + m − 1 ≠ 0 2 m 2 + m − 3 = 0 ⇔ m = 1 m = − 3 2

Kết hợp với điều kiện  ⇒ m ∈ 1 ; − 3 2  là các giá trị cần tìm.

12 tháng 4 2023

a) \(x^2-mx+2m-4=0\) nhận \(x=3\) là nghiệm nên:

\(3^2-m.3+2m-4=0\)

\(\Leftrightarrow9-3m+2m-4=0\)

\(\Leftrightarrow m-5=0\)

\(\Leftrightarrow m=5\)

Vậy phương trình trở thành: \(x^2-5x+6=0\) nhận x=3 là nghiệm vậy nghiệm còn lại là:

\(\Delta=\left(-5\right)^2-4.1.6=1\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{1}}{2.1}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{1}}{2.1}=2\end{matrix}\right.\)

Vậy nghiệm còn lại là \(x=2\)

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

7 tháng 2 2022

1) Với m=-2

\(\left(1\right)\Leftrightarrow x^2-6x+2.\left(-2\right)-3=0\Leftrightarrow x^2-6x-7=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=7\end{matrix}\right.\)

2) PT (1) là PT bậc 2 có:

\(\Delta=\left(-6\right)^2-4.\left(2m-3\right)=-8m+48\)

Để PT có 2 nghiệm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow-8m+48>0\Leftrightarrow m< 6\)

13 tháng 7 2019

a, Cách 1. Đặt  1 y + 1 = u  ta được  3 x - 2 u = 1 5 x + 2 u = 3

Giải ra ta được x = 1 2 ; u = 1 4

Từ đó tìm được y = 3

Cách 2. Cộng vế với vế hai phương trình, ta được 8x = 4

Từ đó tìm được x = 1 2 và y = 3

b, Vì x1x2 = -m2 - 1 < 0 "m nên phương trình đã cho luôn có hai nghiệm phân biệt và trái dấu.

Cách 1. Giả sử   x 1 < 0 <  x 2

Từ giả thiết thu được –  x 1 + x 2 =  2 2

Biến đổi thành  x 1 + x 2 2 - 4 x 1 x 2 = 8

Áp dụng định lý Vi-ét, tìm được m = 1 hoặc m =  - 3 5

Cách 2. Bình phương hai vế của giả thiết và biến đổi về dạng

x 1 + x 2 2 - 2 x 1 x 2 + 2 x 1 x 2 = 8

=>  m - 1 2 + 4 m 2 + 1 = 8

Do  x 1 x 2 = - x 1 x 2

Áp dụng hệ thức Vi-ét, ta cũng tìm được m = 1 hoặc m =  - 3 5

6 tháng 4 2023

\(2x^2-4x-m=0\left(1\right)\)

a, Để pt (1) có hai nghiệm phân biệt thì Δ' > 0

\(\Rightarrow2+2m>0\Leftrightarrow m>-1\)

b, Theo viét : \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)

Vì \(t_1,t_2\) là hai nghiệm của Phương trình \(x^2-Sx+P=0\) nên theo viét đảo có :

\(\left\{{}\begin{matrix}S=t_1+t_2=\dfrac{1}{x_1}+\dfrac{1}{x_2}\\P=t_1.t_2=\dfrac{1}{x_1x_2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}S=\dfrac{x_1+x_2}{x_1x_2}\\P=\dfrac{1}{x_1x_2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}S=\dfrac{2}{-\dfrac{m}{2}}\\P=\dfrac{1}{-\dfrac{m}{2}}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}S=-\dfrac{4}{m}\\P=-\dfrac{2}{m}\end{matrix}\right.\)

\(\Rightarrow\) Phương trình cần tìm là : \(x^2+\dfrac{4}{m}.x-\dfrac{2}{m}=0\) hay \(x^2m+4x-2=0\)