K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2016

A=98 x a+118 x b+2 x a-18 x b

=(98+2) x a+(118-18) x b

=100 x a+100 x b

=100 x (a+b)

=100 x 20 x 12

=2000 x 12

=24000

13 tháng 5 2016

Ta có: A = 98 x a + 2 x a + 118 x b - 18 x b

             = (98+2) x a + (118-18) x b

             = 100 x a + 100 x b

             = 100 x (a+b)

             = 100 x 240

             = 24000 

13 tháng 5 2016

=24000

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

Vì x = -12 nên |x| = 12

a) 18 + |x| = 18 + 12 = 30;

b) 25 - |x| = 25 – 12 = 13;

c) |3+x| - |7| = |3 + (-12)| - 7  =  | 3+(-12)| - 7 = |-9| - 7 = 9 – 7 = 2

a: 18+|x|=18+12=30

b: 25-|x|=25-12=13

c: |3+x|-|7|=|3-12|-7=9-7=2

14 tháng 7 2018

3x - 2 = 2x - 3

=> 3x - 2x = -3 + 2

=> 1x = -1

vậy x = -1

25 tháng 8 2021

a) \(A=1-8x-x^2=-\left(x^2+8x+16\right)+17=-\left(x-4\right)^2+17\le17\)

\(ĐTXR\Leftrightarrow x=4\)

b) \(B=5-2x+x^2=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

\(ĐTXR\Leftrightarrow x=1\)

c) \(C=x^2+4y^2-6x+8y-2021=\left(x^2-6y+9\right)+\left(4y^2+8y+4\right)-2034=\left(x-3\right)^2+\left(2y+2\right)^2-2034\ge-2034\)

\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

a: Ta có: \(A=-x^2-8x+1\)

\(=-\left(x^2+8x-1\right)\)

\(=-\left(x^2+8x+16-17\right)\)

\(=-\left(x+4\right)^2+17\le17\forall x\)

Dấu '=' xảy ra khi x=-4

b: Ta có: \(x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

23 tháng 5 2021

a) Thay `x=1/2` vào A được:

`A=(5. 1/2 -7)(2. 1/2 +3)-(7 . 1/2 +2)(1/2 -4)=5/4`

b) Thay `x=2;y=-2` vào B được:

`B=(2+2.2)(-2-2.2)+(2-2.2)(-2+2.2)=-40`.

23 tháng 5 2021

a) Với \(x=\dfrac{1}{2}\) ta được:

\(\Leftrightarrow A=\left(\dfrac{5.1}{2}-7\right)\left(\dfrac{2.1}{2}+3\right)-\left(\dfrac{7.1}{2}+2\right)\left(\dfrac{1}{2}-4\right)\)

\(\Leftrightarrow A=-\dfrac{9}{2}.4-\dfrac{11}{2}.\left(-\dfrac{7}{2}\right)\)

\(\Rightarrow A=\dfrac{5}{4}\)

 

21 tháng 8 2023

ĐKXĐ : \(x\ne0;x\ne\pm1\)

a) Bạn ghi lại rõ đề.

b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)

c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)

Không tồn tại Min P \(\forall x\inℝ\)