Cho hình vuông ABCD cố định, M là 1 điểm lấy trên cạnh BC (M ¹ B). Tia AM cắt DC tại P. Trên tia đối của tia DC lấy điểm N sao cho DN = BM.
a. Chứng minh: DAND = DABM và DMAN là D vuông cân.
b. Chứng minh: DABM và DPDA đồng dạng và BC2 = BM . DP.
c. Qua A vẽ đường thẳng vuông góc với MN tại H và cắt CD tại Q, MN cắt AD ở I. Chứng minh: AH . AQ = AI . AD và DÂQ = HMQ.
d. Chứng minh: DNDH và DNIQ đồng dạng