K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

\(A=\left(2x\right)^2-2\times2x\times3+9+1\)

\(A=\left(2x-3\right)^2+1\)

Nhận xét: 

\(\left(2x-3\right)^2\ge0\)

\(=>\left(2x-3\right)^2+1\ge1\)

\(=>A\ge1\)

Vậy A đạt GTNN tại A=1 <=> x=3/2

12 tháng 5 2016

A = 4x2 -12x + 10

   =  (2x)2 - 2.2x.3 + 32 + 1

= (2x -3)2 +1 >= 1 với mọi x

Min A = 1 khi (2x -3)2 =0

             <=> 2x - 3 = 0

             <=> 2x = 3

               <=> x = 3/2

Vậy Min A=1 khi x = 3/2

4 tháng 10 2021

a) \(4x^2+12x+1=\left(4x^2+12x+9\right)-8=\left(2x+3\right)^2-8\ge-8\)

\(ĐTXR\Leftrightarrow x=-\dfrac{3}{2}\)

b) \(4x^2-3x+10=\left(4x^2-3x+\dfrac{9}{16}\right)+\dfrac{151}{16}=\left(2x-\dfrac{3}{4}\right)^2+\dfrac{151}{16}\ge\dfrac{151}{16}\)

\(ĐTXR\Leftrightarrow x=\dfrac{3}{8}\)

c) \(2x^2+5x+10=\left(2x^2+5x+\dfrac{25}{8}\right)+\dfrac{55}{8}=\left(\sqrt{2}x+\dfrac{5\sqrt{2}}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\)

\(ĐTXR\Leftrightarrow x=-\dfrac{5}{4}\)

d) \(x-x^2+2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{9}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)

\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)

e) \(2x-2x^2=-2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{2}=-2\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\le\dfrac{1}{2}\)

\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)

f) \(4x^2+2y^2+4xy+4y+5=\left(4x^2+4xy+y^2\right)+\left(y^2+4y+4\right)+1=\left(2x+y\right)^2+\left(y+2\right)^2+1\ge1\)

\(ĐTXR\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

a: Ta có: \(4x^2+12x+1\)

\(=4x^2+12x+9-8\)

\(=\left(2x+3\right)^2-8\ge-8\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)

b: Ta có: \(4x^2-3x+10\)

\(=4\left(x^2-\dfrac{3}{4}x+\dfrac{5}{2}\right)\)

\(=4\left(x^2-2\cdot x\cdot\dfrac{3}{8}+\dfrac{9}{64}+\dfrac{151}{64}\right)\)

\(=4\left(x-\dfrac{3}{8}\right)^2+\dfrac{151}{16}\ge\dfrac{151}{16}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{8}\)

c: Ta có: \(2x^2+5x+10\)

\(=2\left(x^2+\dfrac{5}{2}x+5\right)\)

\(=2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{55}{16}\right)\)

\(=2\left(x+\dfrac{5}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{5}{4}\)

26 tháng 7 2019

Đặt \(C=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(=\left|2x-1\right|+\left|2x-3\right|\)

\(=\left|2x-1\right|+\left|3-2x\right|\)

\(\ge\left|\left(2x-1\right)+\left(3-2x\right)\right|=\left|2\right|=2\)

Vậy \(C_{min}=2\)

26 tháng 7 2019

#)Giải :

\(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(=\left|2x-1\right|+\left|2x-3\right|\)

\(=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=2\)

Dấu ''='' xảy ra khi x = 1

a: ta có: \(A=x^2-3x+10\)

\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{31}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}>0\forall x\)

b: Ta có: \(B=x^2-5x+2021\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{8015}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{8015}{4}>0\forall x\)

23 tháng 9 2021

a) Sửa đề: \(x^2+3x+1\rightarrow x^2+2x+1\)

\(x^2+2x+1=\left(x+1\right)^2\)

b) \(x^2+y^2+2xy=\left(x+y\right)^2\)

c) \(9x^2+12x+4=\left(3x+2\right)^2\)

d) \(-4x^2-9-12x=-\left(4x^2+12x+9\right)=-\left(2x+3\right)^2\)

26 tháng 8 2021

`a)x^2-2x+2+4y^2+4y`

`=x^2-2x+1+4y^2+4y+1`

`=(x-1)^2+(2y+1)^2`

`b)4x^2+y^2+12x+4y+13`

`=4x^2+12x+9+y^2+4y+4`

`=(2x+3)^2+(y+2)^2`

`c)x^2+17+4y^2+8x+4y`

`=x^2+8x+16+4y^2+4y+1`

`=(x+4)^2+(2y+1)^2`

`d)4x^2-12xy+y^2-4y+13`

`=4x^2-12x+9+y^2-4y+4`

`=(2x-3)^2+(y-2)^2`

26 tháng 8 2021

a) \(x^2-2x+2+4y^2+4y=\left(x-1\right)^2+\left(2y+1\right)^2\)

b) \(4x^2+y^2+12x+4y+13=\left(2x+3\right)^2+\left(y+2\right)^2\)

c) \(x^2+17+4y^2+8x+4y=\left(x+4\right)^2+\left(2y+1\right)^2\)

d) \(4x^2-12x+y^2-4y+13=\left(2x-3\right)^2+\left(y-2\right)^2\)

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

25 tháng 9 2021

a)\(A=-x^2+2x+3=-\left(x^2-2x+1\right)+4=-\left(x-1\right)^2+4\le4\)

\(maxA=4\Leftrightarrow x=1\)

b) \(C=12x-4x^2+3=-\left(4x^2-12x+9\right)+12=-\left(2x-3\right)^2+12\le12\)

\(maxC=12\Leftrightarrow x=\dfrac{3}{2}\)

 

25 tháng 9 2021

Cảm ơn rất nhiều

 

10 tháng 5 2017

Ta có : \(4x^2-12x+10=\left(2x\right)^2-2.2x.3+9+1\)

\(=\left(2x-3\right)^2+1\ge1\)\(\left(2x-3\right)^2\ge0\)

Amin = 1 \(\Leftrightarrow2x-3=0\)

\(\Leftrightarrow2x=3\)

\(\Leftrightarrow x=\dfrac{3}{2}\)

Vậy GTNN của A là 1 \(\Leftrightarrow x=\dfrac{3}{2}\)

10 tháng 5 2017

Ta có: 4x2-12x+10= (2x-3)2+1

vì (2x-3)2\(\ge\)0

nên (2x-3)2+1>1

dấu bằng xảy ra khi: 2x-3=0

\(\Leftrightarrow\)x=\(\dfrac{3}{2}\)

Vậy GTNN của A là 1 khi x=\(\dfrac{3}{2}\)

17 tháng 7 2023

\(A=x^2-4x+20=x^2-4x+4+16=\left(x-2\right)^2+16\)

Do \(\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2+16\ge16\)

\(\Rightarrow Min\left(A\right)=16\)

\(B=x^2-3x+7=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}+7=\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\)

Do \(\left(x-\dfrac{3}{2}\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

\(\Rightarrow Min\left(B\right)=\dfrac{19}{4}\)

\(C=-x^2-10x+70=-\left(x^2+10x+25\right)+25+70=-\left(x-5\right)^2+95\)

Do \(-\left(x-5\right)^2\le0\)

\(\Rightarrow-\left(x-5\right)^2+95\le95\)

\(\Rightarrow Max\left(C\right)=95\)

\(D=-4x^2+12x+1=-\left(4x^2-12x+9\right)+9+1=-\left(2x-3\right)^2+10\)

Do \(-\left(2x-3\right)^2\le0\)

\(\Rightarrow-\left(2x-3\right)^2+10\le10\)

\(\Rightarrow Max\left(D\right)=10\)