K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

Đặt A=12+22+32+.....+1002

=>A=1.1+2.2+3.3+....+100.100

=>A=1.(0+1)+2.(1+1)+3.(1+2)+....+100.(1+99)

=>A=1.0+1.1+2.1+1.2+3.1+2.3+......+100.1+99.100

=>A=1+2+1.2+3+2.3+......+100+99.100

=>A=(1+2+3+....+100)+(1.2+2.3+....+99.100)

Đặt S=1.2+2.3+....+99.100

=>3S=1.2.3+2.3.3+....+99.100.3

=>3S=1.2.(3-0)+2.3.(4-1)+....+99.100.(101-98)

=>3S=1.2.3-0.1.2+2.3.4-1.2.3+......+99.100.101-98.99.100

=>3S=1.2.3+2.3.4-1.2.3+.....+99.100.101-98.99.100

=>3S=99.100.101=>\(S=\frac{99.100.101}{3}=333300\)

Đặt P=1+2+3+....+100

từ 1->100 có:100-1+1=100(số hạng)

=>\(1+2+3+....+100=\frac{100.\left(100+1\right)}{2}=5050\)

Vậy A=S+P=333300+5050=338350

12 tháng 5 2016

đặt B=12+22+32+.....+1002

B=1+2(1+1)+3(2+1)+...+99(98+1)+100(99+1)

B=1+1.2+2+2.3+3+...+98.99+99+99.100+100

B=(1.2+2.3+...+99.100)+(1+2+3+...+99+100)

B=333300+5050

B=338050

27 tháng 4 2021

Đặt A=12+22+32+...+1002
A=1.1+2.2+3.3+...+100.100
A=1(

a:

Số số hạng trong dãy M là:

(1002-12):10+1=100(số)

=>Sẽ có 50 cặp (1002;992); (982;972);....;(22;12) có hiệu bằng 10

\(M=1002-992+982-972+...+22-12\)

\(=\left(1002-992\right)+\left(982-972\right)+...+\left(22-12\right)\)

\(=10+10+...+10\)

=10*50=500

b: \(N=\left(202+182+...+42+22\right)-\left(192+172+...+32+12\right)\)

\(=\left(202-192\right)+\left(182-172\right)+...+\left(22-12\right)\)

=10+10+...+10

=10*10=100

22 tháng 10 2020

a) \(=\left(127+73\right)^2=200^2=40000\)

b) \(=18^8-\left(18^8-1\right)=1\)

c) \(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\)

\(=100+99+98+97+...+2+1=5050\)

d) biến đổi thành \(20^2-19^2+18^2-17^2+..+2^2-1^2\)

rồi giải ra như trên

19 tháng 8 2023

Each term of S is n!(n2 + n + 1) = n![n(n + 1) + 1] = n(n + 1)n! + n!

By definition, n(n + 1)n! + n! = n! + n(n + 1)!

Therefore, S can be simplified as

1! + 1.2! + 2! + 2.3! + ... + 100! + 100.101!

So \(\dfrac{S+1}{101!}=\dfrac{1+1!+1\cdot2!+2!+2\cdot3!+...+100!+100\cdot101!}{101!}\)

\(=\dfrac{2!+1\cdot2!+2!+2\cdot3!+3!+...+100!+100\cdot101!}{101!}\)

\(=\dfrac{3!+2\cdot3!+3!+...+100!+100\cdot101!}{101!}\)

\(=\dfrac{4!+3\cdot4!+4!+...+100!+100\cdot101!}{101!}\)

\(=...\)

\(=\dfrac{100!+99\cdot100!+100!+100\cdot101!}{101!}\)

\(=\dfrac{101!+100\cdot101!}{101!}\)

\(=1+100=101\)

Hence, \(\dfrac{S+1}{101!}=101\)

25 tháng 7 2023

Cho: \(A=\dfrac{2}{2^2}+\dfrac{2}{3^2}+\dfrac{2}{4^2}+....+\dfrac{2}{100^2}\)

\(A=2\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\right)\)

Và cho \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

Mà: 

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\)

....

\(\dfrac{1}{100^2}< \dfrac{1}{99\cdot100}\)

Nên: \(B< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{99\cdot100}\)

\(\Rightarrow B< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow B< 1-\dfrac{1}{100}\)

\(\Rightarrow B< \dfrac{99}{100}\)

Mà: \(\dfrac{99}{100}< 1\) (tử nhỏ hơn mẫu)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)

\(\Rightarrow A=2\cdot\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+..+\dfrac{1}{100^2}\right)< 2\) (đpcm)

25 tháng 7 2023

\(\dfrac{2}{2^2}+\dfrac{2}{3^2}+\dfrac{2}{4^2}+...+\dfrac{2}{100^2}\)

\(=2\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\right)\)

mà \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)

\(\Rightarrow dpcm\)

15 tháng 8 2023

https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881

Cô làm rồi em nhá

15 tháng 8 2023

Câu a, xem lại đề bài

Câu b: 

    P =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)

   Vì  \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\)                =  \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)

         \(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\)                = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)

         \(\dfrac{1}{4^2}\)  < \(\dfrac{1}{3.4}\)               = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) 

     ........................

        \(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)

Cộng vế với vế ta có:  

0< P < 1 - \(\dfrac{1}{2023}\) < 1

Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp

 

15 tháng 8 2023

Câu c:  

C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C 

B =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0 

Cộng vế với vế ta có: 

C+B =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)\(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0

             Mặt khác ta có: 

1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)

Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)