Tìm nghiệm của đa thức x^2-2x=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho `H(x)=0`
`=>4x^2-64=0`
`=>(2x-8)(2x+8)=0`
`@TH1:2x-8=0=>2x=8=>x=4`
`@TH2:2x+8=0=>2x=-8=>x=-4`
Vậy nghiệm của `H(x)` là `x=4` hoặc `x=-4`
______________________________________________
Cho `K(x)=0`
`=>(2x+8)^2=0`
`=>2x+8=0`
`=>2x=-8`
`=>x=-4`
Vậy nghiệm của `K(x)` là `x=-4`
x2 - 2x =0
=>x.x -2x =0
=>(x-2)x=0
=>th1:x-2=0
=> x=2
th2:x=0
=>x=0
Vậy nghiệm của đa thức x2-2x=0 là x=0
hoặc x=2
cho mik vs nha
chúc pn thi tốt
dễ mà
x2-2x=0
x(x-2)=0
=> x=0 hoạc x-2=0
x=-2 (loại)
=> x=0
Bài toán :
Lời giải:
Tập xác định của phương trình
Giải phương trình
Giải phương trình
Biệt thức
Biệt thức
Nghiệm
Lời giải thu được
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
\(2x^2+2x+1=0\)
\(< =>4x^2+4x+2=0\)
\(< =>\left(2x\right)^2+2.2x.1+1^2+1=0\)
\(< =>\left(2x+1\right)^2+1=0\)
Do \(\left(2x+1\right)^2\ge0=>\left(2x+1\right)^2+1>0\)
=> pt voo nghieemj
\(x^2-6x+15=0\)
\(< =>x^2-2.x.3+9+6=0\)
\(< =>\left(x-3\right)^2+6=0\)
Do \(\left(x-3\right)^2\ge0=>\left(x-3\right)^2+6>0\)
=> da thuc vo nghiem
Bài làm:
Ta có: \(A\left(x\right)=x^3+3x^2-4x=x\left(x-1\right)\left(x+4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\\x+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\\x=-4\end{cases}}\)là nghiệm của A(x)
Vậy x = 0 là nghiêm của A(x)
Mà tại x = 0 thì giá trị của B(x) là:
\(B\left(0\right)=-2.0^3+3.0^2+4.0+1=1\)
=> x = 0 không là nghiệm của B(x)
1. 2x2-x=0
<=>x(2x-1)=o
=>x=0 hoặc x=1/2
2.A(x)4x2-8x+5/2=4(x-1/2)2+1/2
Vì 4(x-1/2)2>=o với mọi x
nên 4(x-1/2)2+1/2>=1/2 với mọi x
Dấu "="xảy ra khi và chỉ khi x-1/2=0<=> x= 1/2
Vậy GTNN của A=1/2 khi x= 1/2
Bài 1:\(2x^2-x=0\Leftrightarrow x\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
Bài 2:\(A\left(x\right)=\frac{4x^2-8x+5}{2}=\frac{4\left(x^2-2x+1\right)+1}{2}=\frac{4\left(x-1\right)^2+1}{2}=2\left(x-1\right)^2+\frac{1}{2}\)
Vì \(\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2\Rightarrow A=2\left(x-1\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
=>\(A_{min}=\frac{1}{2}\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
=,x(x-2) =0
x=0
x=2
x^2-2x=0
=>x(x-2)=0
<=>x=0
hoặc x-2=0
<=>x=0
hoặc x=2
ai k mh mh k lại
k cho mh nhamỹ nguyễn ngọc