vì sao m2 cộng 4 lại luôn lớn hơn hoặc bằng 0 với mọi m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nộp cho cô hả ?
Nếu vậy bn nói với cô là " thưa cô đây là điều hiển nhiên, ko cần chứng minh nha !"
a) `P=x^2-4x+5`
`=(x^2-4x+4)+1`
`=(x^2-2.x.2+2^2)+1`
`=(x-2)^2+1`
Vì `(x-2)^2 >=0 ` nên `(x-2)^2+1 >=1 >0` với mọi `x`
`<=> (x-2)^2+1 >0` với mọi `x`
Vậy ta có điều phải chứng minh.
``
b) `P=x^2-2x+2`
`=(x^2-2x+1)+1`
`=(x^2-2.x.1+1^2)+1`
`=(x-1)^2+1`
Vì `(x-1)^2 >=0` với mọi `x`
`=>(x-1)^2+1 >=1 >0` với mọi `x`
`<=> (x-1)^2+1 >0` với mọi `x`
Vậy ta có điều phải chứng minh.
\(a,P=x^2-4x+5\)
\(=x^2-2.x.2+4+1\)
\(=\left(x-2\right)^2+1\)
Vì \(\left(x-2\right)^2\ge0\forall x\) mà \(1>0\)
\(\Rightarrow\left(x-2\right)^2+1>0\forall x\)
Vậy đa thức \(P\) luôn luôn lớn hơn 0 \(\forall x\)
_____________________________________
\(b,P=x^2-2x+2\)
\(=x^2-2.x.1+1+1\)
\(=\left(x-1\right)^2+1\)
Vì \(\left(x-1\right)^2\ge0\forall x\) mà \(1>0\)
\(\Rightarrow\left(x-1\right)^2+1>0\forall x\)
Vậy đa thức \(P\) luôn luôn lớn hơn 0 \(\forall x\)
refer
Ta có: m2=m⋅mm2=m⋅m
*Trường hợp 1: M<0
⇒m⋅m=(−m)⋅(−m)⇒m⋅m=(−m)⋅(−m)
Vì âm nhân âm ra dương nên m2>0
hay (-m)(-m)>0
*Trường hợp 2: M=0
⇒m⋅m=0⋅0=0⇒m⋅m=0⋅0=0
hay m2=0
*Trường hợp 3: M>0
⇒m2=m⋅m⇒m2=m⋅m
Vì dương nhân dương ra dương nên m2>0
hay m2≥≥0(đpcm)
ko bt đúng ko :>