K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2022

được 48 chữ số nha bạn

Gọi số cần tìm là \(\overline{abcdef}\)

TH1: 0,1,2 là 3 số cuối

=>\(\overline{abc012};\overline{abc210}\)

a có 6 cách

b có 5 cách

c có 4 cách

=>CÓ 6*5*4*2=240 cách

TH2: \(\overline{ab\left\{0,1,2\right\}f}\)

0,1,2 có 3!=6 cách

a có 5 cách

b có 4 cách

f có 3 cách

=>Có 360 cách

TH3: \(\overline{a\left\{0,1,2\right\}ef}\)

0,1,2 có 3!=6 cách

f có 2 cách

e có 5 cách

a có 4 cách

=>Có 6*3*5*4=360 cách

TH4: \(\overline{\left\{0,1,2\right\}def}\)

{0;1;2} có 4 cách

f có 3 cách

d có 5 cách

e có 4 cách

=>Có 4*3*5*4=240 cách

=>Có 120+120+360+360+240=1200 cách

7 tháng 5 2023

TH1 (012)def : chọn a từ (1,2) có 2 cách

chọn b từ (012)/(a) có 2 cách

chọn c từ (012)/(ab) có 1 cách

chọn f chẵn từ (4,6) có 2 cách

với d và e chọn 2 số từ 4 số còn lại và xếp nên có 4A2 cách

vậy có  2.2.1.4A2.2 số

TH2 a(012)ef 

xếp chỗ cho 3 số (012) có 3! cách

chọn f từ (4,6) có 2 cách 

chọn ae từ 4 số còn lại và xếp có 4A2 cách

 vậy có 3!.2.4A2 số 

TH3  ab(012)f

tương tự TH2

TH4 : abc(012):

chọn f chẵn từ (0,2)  có 2 cách

chọn e từ (012)/(a) có 2 cách

chọn d từ (012)/(ab) có 1 cách

với abc chọn 3 số từ 5 số còn lại và xếp nên có 5A3 cách

vậy có 2.2.1.5A3 số 

tổng 4 TH ta có 

2.2.1.4A2.2+3!.2.4A2+3!.2.4A2+2.2.1.5A3=624 số

 

 

10 tháng 11 2021

Tham khảo!

 

gọi số cần tìm là abcde, ta có:

+hàng đơn vị (e) vì là số chẵn nên có 4 cách chọn: 0;2;4;6

+ hàng chục(d) có 6 cách chọn

+ c =5; b=4; a =3

vậy có: 4.6.5.4.3 = 1440 số chẵn

1 tháng 3 2020

Có 2 cách chọn hàng trăm 

Có 2 cách chọn hàng chục

Có 1 cách chọn hàng đơn zị

=> có tát cả cacsn số là

2.2.1=4( số)

. Các số lập đc là

102,120,201,210

tông là

102+120+201+210=633

1 tháng 3 2020

từ các số 0,1,2 ta lập được các chữ số là 120,210,102,201

VẬY có tất cả 4 số có 3 chữ số khác nhau

NV
22 tháng 1 2024

Gọi số có 6 chữ số dạng \(\overline{abcdef}\)

- TH1: \(f=0\)

\(\Rightarrow\) Bộ abcde có \(A_9^5\) cách chọn và hoán vị

TH2: \(f\ne0\Rightarrow f\) có 4 cách chọn (từ các chữ số 2,4,6,8)

a có 8 cách chọn (khác 0 và f), bộ bcde có \(A_8^4\) cách chọn

\(\Rightarrow4.8.A_8^4\) số

Vậy tổng cộng lập được: \(A_9^5+4.8.A_8^4=68880\) số thỏa mãn

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a)     Số có ba chữ số khác nhau có thể lập được là: 6.5.4 = 120 (số)

b)    Số chia hết cho 3 nên tổng 3 chữ số chia hết cho 3, có các cặp số là: (1,2,3), (1,2,6), (2,3,4), (3,4,5), (4,5,6), (1,5,6), (1,3,5), (2,4,6).

Số có ba chữ số khác nhau và chia hết cho 3 có thể lập được là:

       8. 3! = 48 (số)

a: \(\overline{abc}\)

a có 3 cáhc

b có 4 cáhc

c có 4 cách

=>Có 3*4*4=48 cách

b: \(\overline{abcd}\)

a có 3 cách

b có 3 cách

c có 2 cách

d có 1 cách

=>Có 3*3*2=18 cách

c: \(\overline{abc}\)

c có 1 cách

a có 3 cách

b có 4 cách

=>Có 1*3*4=12 cách

d: \(\overline{abcd}\)

TH1: d=0

=>Có 3*4*4=48 cách

TH2: d<>0

d có 2 cách

a có 3 cách

b có 4 cách

c có 4 cách

=>Có 4*4*3*2=16*6=96 cách

=>Có 144 cách

10 tháng 7 2023

Cảm ơn bạn nhiều!yeu

2:

\(\overline{abcd}\)

d có 1 cách chọn 

a có 3 cách chọn

b có 2 cách chọn

c có 1 cách chọn

=>Có 3*2*1*1=6 cách

1: \(\overline{abc}\)

a có 3 cách

b có 3 cách

c có 2 cách

=>Có 3*3*2=18 cách

21 tháng 7 2017

các số có 3 chữ số khác bhau viết được từ ba số 0;1;2 là :

102;120;201.

Tông của ba số trên là : 102+201+120=423

16 tháng 8 2017

Đáp án B

Số các số có chín chữ số khác nhau là 9!. Trong 9! số này, số các số mà chữ số 1 đứng trước chữ số 2 hoặc chữ số 1 đứng sau chữ số 2 là bằng nhau. Do đó, số các số mà chữ số 1 đứng trước chữ số 2 là 9 ! 2 .  

Tương tự, số các số mà chữ số 1 đứng trước chữ số 2 và chữ số 3 đứng trước chữ số 4 là 9 ! 4 .  

Số các số cần tìm là  9 ! 8 = 45360.