Chứng minh \(a+b+\frac{a+b}{ab}-\frac{29}{5}\ge0\) biết \(a,b>0\) thỏa mãn \(a+b-\frac{4}{5}\le0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
Áp dụng BĐT cho 2 số dương:
\(\frac{1}{\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Xét: c + 1 = c + a + b + c
\(\frac{ab}{\left(c+1\right)}\le\frac{ab}{4}.\left[\frac{1}{\left(a+c\right)}+\frac{1}{\left(b+c\right)}\right]\)
Tương tự:
\(\frac{bc}{\left(a+1\right)}\le\frac{bc}{4}.\left[\frac{1}{\left(a+c\right)}+\frac{1}{\left(b+a\right)}\right]\)
\(\frac{ca}{\left(b+1\right)}\le\frac{ac}{4}.\left[\frac{1}{\left(a+b\right)}+\frac{1}{\left(c+b\right)}\right]\)
Cộng lại:
\(\frac{ac}{\left(c+1\right)}+\frac{bc}{\left(a+1\right)}+\frac{ca}{\left(b+1\right)}\le\frac{1}{4}\left\{\frac{ab}{\left(a+c\right)}+\frac{ab}{\left(b+c\right)}+\frac{bc}{\left(a+c\right)}+\frac{bc}{\left(a+c\right)}+\frac{ac}{\left(a+b\right)}\right\}\)
Cộng lại + rút gọn mẫu số
\(\frac{ab}{\left(c+1\right)}+\frac{bc}{\left(a+1\right)}+\frac{ca}{b+1}\le\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)
Dấu '=' xảy ra khi a = b = c
P/s: Sai đâu bạn sửa nhé!
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
đặt a = 2x+y+z ; b = 2y+z+x ; c = 2z+x+y => a+b+c = 4x+4y+4z
=> a - (a+b+c)/4 = x => x = (3a-b-c)/4 ; tương tự y = (3b-c-a)/4 ; z = (3c-a-b)/4
thay vào vế trái ta có
P = (3a-b-c)/4a + (3b-c-a)/4b + (3c-a-b)/4c =
= 9/4 - (b/4a + c/4a + c/4b + a/4b + a/4c + b/4c)
= 9/4 - (1/4)(b/a+a/b + c/a+a/c + c/b+b/c)
Côsi cho từng cặp ta có: b/a+a/b ≥ 2 ; c/a+a/c ≥ 2 ; c/b+b/c ≥ 2
=> b/a+a/b + c/a+a/c + c/b+b/c ≥ 6
=> -(1/4)(b/a+a/b +c/a+a/c + c/b+b/c) ≤ -6/4 thay vào P ta có:
P ≤ 9/4 - 6/4 = 3/4 (đpcm) ; dấu "=" khi a = b = c hay x = y = z
cách này tuy biến đổi dài nhưng dễ hiểu)
------------
Cách khác:
P = x/(2x+y+z) -1 + y/(2y+z+x) -1 + z/(2z+x+y) - 1 + 3
= -(x+y+z)/(2x+y+z) -(x+y+z)/(2y+z+x) -(x+y+z)/(2z+x+y) + 3
= -(x+y+z).[1/(2x+y+z) + 1/(2y+z+x) + 1/(2z+x+y)] + 3
- - -
Côsi cho 3 số:
2x+y+z + 2y+z+x + 2z+x+y ≥ 3.³√(2x+y+z)(2y+z+x)(2z+x+y)
=> 4(x+y+z) ≥ 3.³√(2x+y+z)(2y+z+x)(2z+x+y) (1*)
Côsi cho 3 số:
1/(2x+y+z)+1/(2y+z+x)+1/(2z+x+y) ≥ 3³√1/(2x+y+z)(2y+z+x)(2z+x+y) (2*)
Lấy (1*) *(2*) ta có:
4(x+y+z)[1/(2x+y+z) + 1/(2y+z+x) + 1/(2z+x+y)] ≥ 9
=> -(x+y+z).[1/(2x+y+z) + 1/(2y+z+x) + 1/(2z+x+y)] ≤ -9/4
thay vào P ta có:
P ≤ -9/4 + 3 = 3/4 (đpcm) ; dấu "=" khi x = y = z
Bạn ơi vì sao lại nhân với 9/4 mình tưởng chỉ nhân với 3/4 thôi chứ nhỉ
\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)
\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)
\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)
Áp dụng BĐT Cô - si ta có :
\(\frac{4}{5}\ge a+b\ge2\sqrt{a.b}\Rightarrow\sqrt{ab}\le\frac{2}{5}\Leftrightarrow ab\le\frac{4}{25}\)
\(\left(a+b\right)+\frac{a+b}{ab}\)
\(=\left[\left(a+b\right)+\frac{4}{25}.\frac{a+b}{ab}\right]+\frac{21}{25}.\frac{a+b}{ab}\)
\(\ge2\sqrt{\left(a+b\right).\frac{4}{25}.\frac{a+b}{ab}}+\frac{21}{25}.\frac{2\sqrt{ab}}{ab}\)
\(=2.\frac{2}{5}.\frac{a+b}{\sqrt{ab}}+\frac{21}{25}.\frac{2}{\sqrt{ab}}\)
\(\ge2.\frac{2}{5}.\frac{2\sqrt{ab}}{\sqrt{ab}}+\frac{21}{25}.\frac{2}{\sqrt{\frac{4}{25}}}\)
\(=\frac{8}{5}+\frac{21}{5}=\frac{29}{5}\)
Dấu ' = ' xảy ra khi và chỉ khi \(a=b=\frac{2}{5}\)
là không biết