SORRY
25% * X+(1/2)*(X-(4/5))=2.6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
25%.x+1/2.x-4/5=2,6
=> 1/4.x+1/2.x-4/5=13/5
=> x.(1/4+1/2) =13/5+4/5
=> x.3/4 =17/5
=> x =17/5:3/4
=> x =68/15
Mik nhé các bạn
a: =>(x-2)^3*[(x-2)^2-1]=0
=>(x-2)(x-3)(x-1)=0
=>\(x\in\left\{1;2;3\right\}\)
b: =>(x-3)^2*(x-3-1)=0
=>(x-3)(x-4)=0
=>x=3 hoặc x=4
c: =>\(11\cdot\dfrac{6^x}{6}+2\cdot6^x\cdot6=6^{11}\left(11+2\cdot6^2\right)\)
=>6^x(11/6+12)=6^12(11/6+12)
=>x=12
b)11.6x-1+2.6x+1=11.611+2.613
11.6x-1+2.6x+1 = 11. 612-1+ 2. 612+1
=> x= 12
c) 24-x / 165 = 326
24-x / 220= 230
24-x = 250
=> 4-x = 50
x= -46
c) \(\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)
\(2^{4-x}:2^{20}=\left(2^5\right)^6\)
\(2^{4-x}=2^{30}.2^{20}\)
\(2^{4-x}=2^{50}\)
=> \(4-x=50\)
=> \(x=4-50=-46\)
vậy x = -46
A)3.5n.52+4.5n:53=19.9765625
5n(3.52+4:53)=185546875
5n.\(\frac{12}{5}\)=185546875
2. Ta có
5x+5x+2=650 <=> 5x+5x.52=650 <=> 5x.(1+25)=650
<=> 5x.26=650
<=>5x=25=>x=2
d: \(\left(2^2:\dfrac{4}{3}-\dfrac{1}{2}\right)\cdot\dfrac{6}{5}-17\)
\(=\left(4\cdot\dfrac{3}{4}-\dfrac{1}{2}\right)\cdot\dfrac{6}{5}-17\)
\(=\left(3-\dfrac{1}{2}\right)\cdot\dfrac{6}{5}-17\)
\(=\dfrac{5}{6}\cdot\dfrac{6}{5}-17=1-17=-16\)
h: \(\dfrac{\left(-1\right)^3}{15}+\left(-\dfrac{2}{3}\right)^2:2\dfrac{2}{3}-\left|-\dfrac{5}{6}\right|\)
\(=-\dfrac{1}{15}+\dfrac{-8}{27}:\dfrac{8}{3}-\dfrac{5}{6}\)
\(=-\dfrac{1}{15}-\dfrac{1}{9}-\dfrac{5}{6}\)
\(=\dfrac{-6-10-75}{90}=\dfrac{-91}{90}\)
k: \(\dfrac{2\cdot6^9-2^5\cdot18^4}{2^2\cdot6^8}\)
\(=\dfrac{2^{10}\cdot3^9-2^5\cdot2^4\cdot3^8}{2^2\cdot2^8\cdot3^8}\)
\(=\dfrac{2^{10}\cdot3^9-2^9\cdot3^8}{2^{10}\cdot3^8}=\dfrac{2^9\cdot3^8\left(2\cdot3-1\right)}{2^{10}\cdot3^8}\)
\(=\dfrac{5}{2}\)
n: \(3-\left(-\dfrac{7}{8}\right)^0+\left(\dfrac{1}{2}\right)^3\cdot16\)
\(=3-1+\dfrac{1}{8}\cdot16\)
=2+2
=4
Đặt \(2^x=a;3^x=b;a>0;b>0\)
Bất phương trình trở thành :
\(a+a^2+2ab>2a+4b+2\Leftrightarrow\left(a+2b+1\right)\left(a-2\right)>0\Leftrightarrow a>2\)
Suy ra \(2^x>2\Leftrightarrow x>1\)
Vậy tập nghiệm của bất phương trình là \(S=\left(1;+\infty\right)\)
\(A=\frac{4^5.9^4-2.6^9}{2^{10}.3^8-6^8.20}\)
\(A=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8-\left(2.3\right)^8.2^2.5}\)
\(A=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8-2^{10}.3^8.5}\)
\(A=\frac{2^{10}.\left(3^8-3^9\right)}{2^{10}.3^8.\left(1-5\right)}=\frac{3^8-3^9}{3^8.\left(-4\right)}=\frac{3^8.\left(1-3\right)}{3^8.\left(-4\right)}=\frac{-2}{-4}=\frac{1}{2}\)
Vậy A = \(\frac{1}{2}\)
\(B=\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(B=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(B=\frac{2^{19}.3^9+3.5.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}\)
\(B=\frac{2^{19}.3^9+3^9.2^{18}.5}{2^{19}.3^9+2^{20}.3^{10}}\)
\(B=\frac{2^{18}.3^9.\left(2+5\right)}{2^{19}.3^9\left(1+2.3\right)}=\frac{7}{2.7}=\frac{1}{2}\)
Vậy B = \(\frac{1}{2}\)