Tìm số đo hóc của tam giác nếu có a.cosB-b.cosA=a.sinA-b.sinB và sin2A+sin2B+cos2A+cos2B= Căn 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=sin^22a+cos^22a+sin^22b+cos^22b+2sin2a.sin2b+2cos2a.cos2b\)
\(P=2+2\left(sin2a.sin2b+cos2a.cos2b\right)=2+2cos\left(2a-2b\right)\)
\(P=2+2cos\frac{\pi}{3}=3\)
\(cos2A+cos2B+cos2C=2cos\left(A+B\right).cos\left(A-B\right)+2cos^2C-1\)
\(=-2cosC.cos\left(A-B\right)+2cos^2C-1\)
\(=-2cosC\left[cos\left(A-B\right)-cosC\right]-1\)
\(=-2cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]-1\)
\(=-4cosC.cosA.cosB-1\)
\(sin2A+sin2B+sin2C=2sin\left(A+B\right)cos\left(A-B\right)+2sinC.cosC\)
\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)
\(=2sinC\left[cos\left(A-B\right)+cosC\right]=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)
\(=-4sinC.sinA.sin\left(-B\right)=4sinA.sinB.sinC\)
Chọn A.
Áp dụng công thức diện tích ta có
Từ giả thiết: a.sinA + b.sinB + c.sinC = ha + hb + hc ta suy ra:
Quy đồng khử mẫu ta được:
2a2 + 2b2 + 2c2 = 2 ab + 2bc + 2ca hay (a - b) 2 + (b - c) 2 + (c - a) 2 = 0
Do đó: a = b = c
Vậy tam giác ABC đều.
Chọn B.
Ta có:
Suy ra ( sin2A - sin2B)2 = 0
Lại có: sin2A = sin2B khi và chỉ khi
hay a = b
Suy ra tam giác ABC cân tại C.