Cho biểu thức M= (m-75)*(52*45+52+52*54)
a)Tính giá trị biểu thức khi m = 100
b) Tìm m để M=10400
Giải hộ mk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay m = 100
=>M = ( 100 - 75 ) x ( 52 x 45 + 52 + 52 x 54 )
= 25 x 5200
= 130000
b) Thay M = 10400
10400 = ( m - 75 ) x ( 52 x 45 + 52 + 52 x 54 )
( m - 75 ) = ( 52 x 45 + 52 + 52 x 54 ) : 10400
( m - 75 ) = 130000 : 10400
( m - 75 ) = 12,5
m = 12,5 + 75
m =87,5
ạo hàm f'(x) = -3x2 - 6x ⇒ f'(x) = 0 ⇔
Ta có
Theo bài ra:
Ví dụ 2: Cho hàm số với m là tham số thực. Tìm giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0; 3] bằng -2.
Hướng dẫn
TXĐ: D = R\{-8}.
Ta có
Khi đó
Ví dụ 3: Cho hàm só (với m là tham số thực). Tìm các giá trị của m đề hàm số thỏa mãn
Hướng dẫn
B. Bài tập vận dụng
Câu 1: Cho hàm số f(x) = x3 + (m2 + 1)x + m2 - 2 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0; 2] bằng 7.
Hiển thị đáp án
Câu 2: Cho hàm số với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0; 1] bằng -2.
Hiển thị đáp án
Câu 3: Tìm tất cả giá trị của m để giá trị nhỏ nhất của hàm số trên đoạn [1; 2] bằng 1.
Hiển thị đáp án
Câu 4: Tìm các giá trị của tham số m sao cho giá trị lớn nhất của hàm số y = |x2 - 2x + m| trên đoạn [-1; 2] bằng 5.
Hiển thị đáp án
Câu 5: Cho hàm số với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0; 1] bằng -2.
a: Khi x=-2 thì \(M=3-\left(-2-1\right)^2=3-9=-6\)
Khi x=0 thì \(M=3-\left(0-1\right)^2=2\)
Khi x=3 thì \(M=3-\left(3-1\right)^2=3-2^2=-1\)
b: Để M=6 thì \(3-\left(x-1\right)^2=6\)
\(\Leftrightarrow\left(x-1\right)^2=-3\)(loại)
c: \(M=-\left(x-1\right)^2+3\le3\forall x\)
Dấu '=' xảy ra khi x=1
a, Thay x=-2 vào M ta có:
\(M=3-\left(-2-1\right)^2=3-\left(-3\right)^2=3-9=-6\)
Thay x=0 vào M ta có:
\(M=3-\left(0-1\right)^2=3-\left(-1\right)^2=3-1=2\)
Thay x=3 vào M ta có:
\(M=3-\left(3-1\right)^2=3-2^2=3-4=-1\)
b, Để M=6 thì:
\(3-\left(x-1\right)^2=6\\ \Leftrightarrow\left(x-1\right)^2=-3\left(vô.lí\right)\)
c, Ta có: \(\left(x-1\right)^2\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
\(\Rightarrow M=3-\left(x-1\right)^2\le3\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
Vậy \(M_{max}=3\Leftrightarrow x=1\)
M xác định
\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\x^2-x\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\left(x-1\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne0;x\ne1\end{cases}}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)
Vậy ĐKXĐ của M là \(\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)
\(M=\frac{3}{x-1}+\frac{1}{x^2-x}=\frac{3}{x-1}+\frac{1}{x\left(x-1\right)}=\frac{3x}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)}=\frac{3x+1}{x\left(x-1\right)}\)
Thay x=5 ta có:
\(M=\frac{3.5+1}{5\left(5-1\right)}=\frac{15+1}{5.4}=\frac{16}{20}=\frac{4}{5}\)
Vậy \(M=5\)tại x=5
\(M=0\)
\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=0\Leftrightarrow3x+1=0\Leftrightarrow x=-\frac{1}{3}\)( thỏa mãn đkxđ)
Vậy với \(x=-\frac{1}{3}\)thì \(M=0\)
\(M=-1\)
\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=-1\Leftrightarrow3x+1=-x^2+x\Leftrightarrow x^2+2x+1=0\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Vậy với \(x=-1\)thì \(M=-1\)