K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2021

a/

Xét tg ABM và tg ACM có

MB=MC (đề bài)

AB=AC (Do tg ABC cân tại A)

\(\widehat{ABC}=\widehat{ACB}\) (Do tg ABC cân tại A)

=> tg ABM=tg ACM (c.g.c)

Ta có MB=MC => AM là trung tuyến của tg ABC => \(AM\perp BC\) (trong tg cân đường trung tuyến đồng thời là đường cao)

b/

Xét tg vuông BME và tg vuông CMF có

MB=MC

\(\widehat{ABC}=\widehat{ACB}\)

=> tg BME = tg CMF (hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => ME=MF => tg EMF cân tại M

c/

Do \(AM\perp BC\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)

Do tg BME = tg CMF \(\Rightarrow\widehat{BME}=\widehat{CME}\)

\(\Rightarrow\widehat{AME}=\widehat{AMF}\) (cungf phụ với \(\widehat{BME}\) = \(\widehat{CMF}\) )

=> AM là phân giác của \(\widehat{FME}\Rightarrow AM\perp EF\)  (Trong tg can EMF đường phân giác đồng thời là đường cao)

Mà \(AM\perp BC\)

=> EF//BC (cùng vuông góc với AM)

2 tháng 3 2022

Vì △ABC cân tại A 

=> ABC = ACB

Xét △BDM vuông tại D và △CEM vuông tại E 

Có:    BM = CM (gt)

       DBM = ECM

=> △BDM = △CEM (ch-gn)

=> DM = EM (2 cạnh tương ứng)

Xét △AMD vuông tại D và △AME vuông tại E

Có:  DM = ME (cmt)

       AM là cạnh chung

=> △AMD = △AME (ch-cgv)

=> AD = AE (2 cạnh tương ứng)

Xét △ADE có AD = AE

=> △ADE cân tại A

=> ADC = (180o - A) : 2 (1)

Vì △ABC cân tại A 

=> ABC = (180o - A) : 2 (2)

Từ (1), (2) => ADC = ABC

Mà 2 góc này nằm ở vị trí đồng vị

=> DE // BC (dhnb)

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

Ta có: ΔBAC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó; ΔAEM=ΔAFM

Suy ra: ME=MF

hay ΔMEF cân tại M

c: BC=6cm nên BM=CM=3cm

=>AM=4cm

d: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

16 tháng 3 2022

cám ơn bạn nhiều!vui

23 tháng 9 2019


A B C M D E

a) Xét \(\Delta ABM\) và \(\Delta ACM\) có :

AB = AC ( gt )

BM = CM ( M là trung điểm BC )

AM : Cạnh chung

=> \(\Delta ABM\) = \(\Delta ACM\) ( c.c.c )

b)  Ta có :  \(\Delta ABM\) = \(\Delta ACM\) ( cmt )

=> \(\widehat{AMB}\) = \(\widehat{AMC}\) ( 2 góc tương ứng )

=> \(\widehat{AMB}\) = \(\widehat{AMC}\)  = \(\frac{\widehat{BMC}}{2}\) = \(\frac {180} 2\) = 90

Hay AM \(\bot\) BC

12 tháng 3 2022

undefined

câu a)

12 tháng 3 2022

undefined

câu b)

a) Xét ΔABM và ΔACM có 

AB=AC(ΔABC cân tại A)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

13 tháng 2 2018

cứ tra mạng là có ngay ak

t nghĩ chắc là cs đây !!

a: Xét ΔABM và ΔACM có

AB=AC
AM chung

BM=CM

Do đó; ΔABM=ΔACM

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó: ΔAEM=ΔAFM

Suy ra: AE=AF và ME=MF

hay ΔMEF cân tại M

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

a) Xét △ABM và △ACM, có:

+ AB = AC

+ Góc BAM = góc CAM (AM là đường phân giác của △ABC)

+ AM cạnh chung

Vậy △ABM = △ACM (c-g-c)

b) Vì △ABM = △ACM 

=> Góc AMB = góc AMC

Ta có: góc AMB + AMC = 1800

          => 1800 = 2AMB 

                AMB = \(\dfrac{180^0}{2}\) = 900

Vì AMB = AMC = 900

Suy ra: AM ⊥ BC

Vậy AM ⊥ BC

Câu c không biết làm nha bạn.