Chứng tỏ với mọi x thuộc N*, ta có: 1-2*5+1/5*8+...+1/(3n+1)*(3n+2)+n/2(3n+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}+\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{3n+2}\right)=\frac{1}{3}\left(\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right)=\frac{1}{3}\cdot\frac{3n}{2\left(3n+2\right)}=\frac{n}{2\left(3n+2\right)}\)
P/s: pải c/m 1/2*5+1/5*8+.....+1/(3n-1)*(3n+2)=n/2*(3n+2) chứ
Tui làm theo cách tiểu học, để mai nghĩ xem có cách nào làm "cấp 3" ko
2+3=5; 5+3=8
Số số hạng: \(\dfrac{3n-1-2}{3}+1=n\left(so-hang\right)\)
Tổng: \(\dfrac{\left(3n-1+2\right).n}{2}=\dfrac{n\left(3n+1\right)}{2}\)
\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\frac{3n}{2.\left(3n+2\right)}\)
\(=\frac{n}{2\left(3n+2\right)}\)
\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right).\left(3n+2\right)}=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right).\left(3n+2\right)}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\left(\frac{3n+2}{2.\left(3n+2\right)}-\frac{2}{2.\left(3n+4\right)}\right)\)
\(=\frac{1}{3}.\frac{3n}{2.\left(3n+2\right)}=\frac{n}{2.\left(3n+2\right)}\)
*n=1 thấy: 2=1x4/2 =>* đúng
Giả sử * đúng với n=k, ta có: 2+5+8+...+3k-1=k(3k+1)/2
=> 2+5+8+...+(3k-1)+(3k+2)=k(3k+1)/2+3k+2=(k(3k+1)+6k+4)/2
=> (k(3k+1)+3k+3k+4)/2=(k(3k+4)+3k+4)/2=(k+1)(3k+4)/2
tức là 2+5+8+...+3k+1=(k+1)(3k+4)/2
=> * đúng với n=k+1
=> Theo nguyên lí quy nạp => * đúng với mọi n thuộc N*
Chuyên toán sao học quy nạp sớm thế.
tham khảo:
\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)
\(2^2+5^2+8^2+...+\left(3n-1\right)^2=\dfrac{n\left(6n^2+3n-1\right)}{2}\left(1\right)\)
Với n=1
\(VT=4;VP=4\)
(1) đúng với n=1
Giả sử (1) đúng với n=\(k\ge1\)
\(2^2+5^2+8^2+...+\left(3k-1\right)^2=\dfrac{k\left(6k^2+3k-1\right)}{2}\)
Ta cần phải chứng minh (1) đúng với n=k+1
\(\Leftrightarrow2^2+5^2+8^2+...+\left(3k-1\right)^2+\left[3\left(k+1\right)-1\right]^2=\dfrac{\left(k+1\right)\left[6\left(k+1\right)^2+3\left(k+1\right)-1\right]}{2}\)
\(\Leftrightarrow2^2+5^2+8^2+...+\left(3k-1\right)^2+\left(3k+2\right)^2=\dfrac{\left(k+1\right)\left(6k^2+15k+8\right)}{2}\)
\(VT=\dfrac{k\left(6k^2+3k-1\right)}{2}+\left(3k+2\right)^2=\dfrac{6k^3+3k^2-k+18k^2+24k+8}{2}\)
\(=\dfrac{6k^3+21k^2+23k+8}{2}=\dfrac{6k^3+15k^2+8k+6k^2+15k+8}{2}\)
\(=\dfrac{k\left(6k^2+15k+8\right)+\left(6k^2+15k+8\right)}{2}=\dfrac{\left(6k^2+15k+8\right)\left(k+1\right)}{2}\)
\(\Leftrightarrow VT=VP\)
suy ra đpcm