Từ điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB,AC (B,C là tiếp điểm). Kẻ cát tuyến ADE,H là trung điểm của DE. Chứng minh :
a/ Tứ giác ABOC nội tiếp
b/ AB2 = AD.AE
c)bh cắt (O) tại K : cm AE//Ck
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc OBA+góc OCA=180 độ
=>OBAC nội tiếp
Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
=>OA là trung trực của BC
=>OA vuông góc BC tại I
b: ΔOBA vuông tại B có BI vuông góc OA
nên OI*IA=BI^2=BC^2/4
Xét ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chug
=>ΔABD đồng dạng với ΔAEB
=>AB/AE=AD/AB
=>AB^2=AD*AE=AH*AO
a) Hai tam giác vuông ABO và ACO có chung cạnh huyền AO nên A, B, O, C cùng thuộc đường tròn đường kính AO.
Vậy tứ giác ABOC là tứ giác nội tiếp.
b) Ta thấy ngay \(\Delta ABD\sim\Delta AEB\left(g-g\right)\)
\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AE.AD=AB^2\)
Xét tam giác vuông ABO có BH là đường cao nên áp dụng hệ thức lượng ta có:
\(AH.AO=AB^2\)
Suy ra AD.AE = AH.AO
c) Ta có \(\widehat{PIK}+\widehat{IKQ}+\widehat{P}+\widehat{Q}=360^o\)
\(\Rightarrow2\left(\widehat{PIO}+\widehat{P}+\widehat{OKQ}\right)=360^o\)
\(\Rightarrow\widehat{PIO}+\widehat{P}+\widehat{OKQ}=180^o\)
Mặt khác \(\widehat{PIO}+\widehat{P}+\widehat{IOP}=180^o\)
\(\Rightarrow\widehat{IOP}=\widehat{OKQ}\Rightarrow\Delta PIO\sim\Delta QOK\)
\(\Rightarrow\frac{IP}{PO}=\frac{OQ}{KQ}\Rightarrow PI.KQ=PO^2\)
Sử dụng bất đẳng thức Cô-si ta có:
\(IP+KQ\ge2\sqrt{IP.KQ}=2\sqrt{OP^2}=PQ\)
acje cho hỏi 2 tam giác đồng dạng ở câu b là góc nào í chỉ ro rõ cho e với ạk
a) Vì AB,AC là tiếp tuyến \(\Rightarrow\Delta ABC\) cân tại A có AO là phân giác \(\angle BAC\)
\(\Rightarrow OA\bot BC\)
Xét \(\Delta ABD\) và \(\Delta AEB:\) Ta có: \(\left\{{}\begin{matrix}\angle ABD=\angle AEB\\\angle EABchung\end{matrix}\right.\)
\(\Rightarrow\Delta ABD\sim\Delta AEB\left(g-g\right)\Rightarrow\dfrac{AB}{AE}=\dfrac{AD}{AB}\Rightarrow AB^2=AD.AE\)
b) tam giác ABO vuông tại B có đường cao BH nên áp dụng hệ thức lượng
\(\Rightarrow AB^2=AH.AO\Rightarrow AH.AO=AD.AE\Rightarrow\dfrac{AH}{AE}=\dfrac{AD}{AO}\)
Xét \(\Delta AHD\) và \(\Delta AEO:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AH}{AE}=\dfrac{AD}{AO}\\\angle EAOchung\end{matrix}\right.\)
\(\Rightarrow\Delta AHD\sim\Delta AEO\left(c-g-c\right)\Rightarrow\angle AHD=\angle AEO\Rightarrow DEOH\) nội tiếp
c) Ta có: \(\angle BHE=90-\angle OHE=90-\angle ODE\) (DEOH nội tiếp)
\(=90-\dfrac{180-\angle DOE}{2}=\dfrac{1}{2}\angle DOE=\dfrac{1}{2}\angle DHE\) (DEOH nội tiếp)
\(\Rightarrow HB\) là phân giác \(\angle DHE\Rightarrow\dfrac{ID}{IE}=\dfrac{DH}{HE}\)
Vì HB là phân giác \(\angle DHE\) và \(HA\bot HB\Rightarrow HA\) là phân giác ngoài \(\angle DHE\)
\(\Rightarrow\dfrac{AD}{AE}=\dfrac{DH}{HE}=\dfrac{ID}{IE}\Rightarrow AD.IE=ID.AE\)
a) Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: AB=AC(cmt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OB=OC(=R)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA\(\perp\)BC tại H
Xét ΔADB và ΔABE có
\(\widehat{BAD}\) chung
\(\widehat{ABD}=\widehat{AEB}\left(=\dfrac{1}{2}sđ\stackrel\frown{BD}\right)\)
Do đó: ΔADB\(\sim\)ΔABE(g-g)
Suy ra: \(\dfrac{AD}{AB}=\dfrac{AB}{AE}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=AD\cdot AE\)
a: góc OBA+góc OCA=180 độ
=>OBAC nội tiếp
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>AH*AO=AB^2
Xét ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chung
=>ΔABD đồng dạng với ΔAEB
=>AB^2=AD*AE=AH*AO
a) Chứng minh tứ giác ABOC nội tiếp được đường tròn.
A B O ^ = 90 0 A C O ^ = 90 0 A B O ^ + A C O ^ = 180 0
=> tứ giác ABOC nội tiếp được đường tròn.
b) Vẽ cát tuyến ADE của (O) sao cho ADE nằm giữa 2 tia AO, AB; D, E Î (O) và D nằm giữa A, E. Chứng minh A B 2 = A D . A E .
Tam giác ADB đồng dạng với tam giác ABE
⇒ A B A E = A D A B ⇔ A B 2 = A D . A E
c) Gọi F là điểm đối xứng của D qua AO, H là giao điểm của AO và BC. Chứng minh: ba điểm E, F, H thẳng hàng.
Ta có D H A ^ = E H O ^
nên D H A ^ = E H O ^ = A H F ^ ⇒ A H E ^ + A H F ^ = 180 0 ⇒ 3 điểm E, F, H thẳng hàng.
Có 1 phần câu trả lời ở đây.
Giải toán: Bài hình trong đề thi HK2 Lớp 9 | Rất phức tạp. - YouTube
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
b: Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔAEB
Suy ra: AB/AE=AD/AB
hay \(AB^2=AD\cdot AE\)