K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A<10(1/40+1/50+1/70+1/60)=319/420<1

A>10(1/50+1/60+1/70+1/80)>7/12

=>7/12<A<1

15 tháng 6 2023

10 laf gif v a

 

22 tháng 2 2016

Ta có: 
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80 
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80) 
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60 
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60 
và 1/61> 1/62> ... >1/79> 1/80 
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80 
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12 
=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12 ( ĐPCM )

27 tháng 4 2016

Chứng minh 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12 

Ta có: 
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80 

1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80) 

Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60 
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60 

và 1/61> 1/62> ... >1/79> 1/80 
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80 

Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12 

=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12 

=> ĐPCM

9 tháng 9 2021

undefined

OK bạn nha

3 tháng 5 2015

+) Chứng minh \(\frac{7}{12}

11 tháng 2 2022

Đặt \(A=\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{80}\)

\(=\left(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{60}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}+...+\dfrac{1}{80}\right)\)

Mặt khác:

\(\dfrac{7}{12}=\dfrac{20}{60}+\dfrac{20}{80}\)

mà \(\left\{{}\begin{matrix}\dfrac{20}{60}< \left(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{60}\right)\\\dfrac{20}{80}< \left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}+...+\dfrac{1}{80}\right)\end{matrix}\right.\)

⇒ \(\dfrac{7}{12}< A\) (1)

Ta có:

\(\dfrac{5}{6}=\dfrac{20}{40}+\dfrac{20}{60}\)

mà \(\left\{{}\begin{matrix}\dfrac{20}{40}>\left(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{60}\right)\\\dfrac{20}{60}>\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}+...+\dfrac{1}{80}\right)\end{matrix}\right.\)

⇒ \(A< \dfrac{5}{6}< 1\)(2)

Từ (1) và (2)

⇒ \(\dfrac{7}{12}< A< 1\) (đpcm)