K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Lời giải:
$(x+\frac{4}{9})^2\geq 0$ (do bình phương 1 số thì không âm)

$\frac{-49}{144}< 0$

Do đó: $(x+\frac{4}{9})^2> \frac{-49}{144}$ với mọi $x$ nên pt trên vô nghiệm.

 

Ta có: \(\left(x+\dfrac{4}{9}\right)^2=-\dfrac{49}{144}\)

mà \(\left(x+\dfrac{4}{9}\right)^2\ge0\forall x\)

nên \(x\in\varnothing\)

à bài 5 thôi nhé

7 tháng 9 2021

2 B

3 C

4 B

5 B

6 B

a: Ta có: \(\dfrac{n\left(n+1\right)}{2}=231\)

\(\Leftrightarrow n^2+n-462=0\)

\(\Leftrightarrow n^2+22n-21n-462=0\)

\(\Leftrightarrow\left(n+22\right)\left(n-21\right)=0\)

\(\Leftrightarrow n=21\)

17 tháng 7 2021

undefined

17 tháng 7 2021

14a) \(M=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{2}.2+2^2}-\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{2}.2+2^2}\)

\(=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}=\left|\sqrt{5}+2\right|-\left|\sqrt{5}-2\right|\)

\(=\sqrt{5}+2-\sqrt{5}+2=4\)

b) \(N=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}.1+1^2}-\sqrt{\left(\sqrt{7}\right)^2+2.\sqrt{7}.1+1^2}\)

\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}=\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|\)

\(=\sqrt{7}-1-\sqrt{7}-1=-2\)

15a) \(P=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{3^2+2.3.\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{3^2-2.3.\sqrt{2}+\left(\sqrt{2}\right)^2}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}=\left|3+\sqrt{2}\right|-\left|3-\sqrt{2}\right|\)

\(=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)

b) \(Q=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)

\(=\sqrt{3^2+2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}+\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}\)

\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}=\left|3+2\sqrt{2}\right|+\left|3-2\sqrt{2}\right|\)

\(=3+2\sqrt{2}+3-2\sqrt{2}=6\)

 

8 tháng 9 2017

i don't know

21 tháng 3 2022

\(y-\dfrac{2}{3}=\dfrac{4}{5}\times\dfrac{3}{4}\\ y-\dfrac{2}{3}=\dfrac{3}{5}\\ y=\dfrac{3}{5}+\dfrac{2}{3}\\ y=\dfrac{9}{15}+\dfrac{10}{15}\\ y=\dfrac{19}{15}\)

Câu 3: 

a) Ta có: \(x^2-1=3\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

b) Ta có: \(\sqrt{16x}-2\sqrt{36x}+\sqrt{9x}=2\)

\(\Leftrightarrow4\sqrt{x}-12\sqrt{x}+3\sqrt{x}=2\)

\(\Leftrightarrow-5\sqrt{x}=2\)(Vô lý)