a) ( 1 + 1/2) x ( 1 + 1/3) x ( 1 + 1/4) x ……. X ( 1 + 1/2000 )
b) 101 x 34 + 10,1 x 130 – 1,01 x 2700
c) 12/50 + 8% + 59/100 + 9%
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{2001}{2000}=\dfrac{2001}{2}\)
b: \(=101\left(34+13-27\right)=101\cdot20=2020\)
c: \(=24\%+8\%+59\%+9\%=1\)
1=ĐS=1
2=ĐS=2000
3=ĐS=0
4=ĐS=7036
K MÌNH NHA
A = \(\dfrac{3^{100}.\left(-2\right)+3^{101}}{\left(-3\right)^{101}-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2\right)+3^{100}.3}{\left(-3\right)^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2+3\right)}{3^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.1}{3^{100}.\left(-3-1\right)}\)
A = \(\dfrac{3^{100}}{3^{100}}\) . \(\dfrac{1}{-4}\)
A = - \(\dfrac{1}{4}\)
\(c,\)\(\left(x-1\right)+\left(x-2\right)+....+\left(x-100\right)=50\)
\(\left(x+x+...+x\right)-\left(1+2+...+100\right)=50\)
\(100x-5050=50\)
\(100x=50+5050\)
\(100x=5100\)
\(\Rightarrow x=\frac{5100}{100}=51\)
\(a,\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+....+\left(x+100\right)=5750\)
\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)
\(100x+5050=5750\)
\(100x=5750-5050\)
\(100x=700\)
\(\Rightarrow x=7\)
\(b,x+\left(1+2+3+...+50\right)=2000\)
\(x+\frac{\left[1+50\right]\cdot\left[\left(50-1\right)\div1+1\right]}{2}=2000\)
\(x+1275=2000\)
\(\Rightarrow x=2000-1275=725\)
Bài 1:
\(101\cdot125+101\cdot25-101\cdot50\)
\(=101\cdot\left(125+25-50\right)\)
\(=101\cdot100\)
\(=10100\)
Bài 2:
\(76\cdot115+56\cdot24+59\cdot24\)
\(=76\cdot115+24\cdot\left(56+59\right)\)
\(=76\cdot115+24\cdot115\)
\(=115\cdot\left(76+24\right)\)
\(=115\cdot100\)
\(=11500\)
a: \(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{2001}{2000}=\dfrac{2001}{2}\)
b: \(=10.1\left(340+120-270\right)=10.1\cdot190=101\cdot19=1919\)
c: \(=24\%+8\%+59\%+9\%=1\)