Cho △ABC, AB= 16cm, AC= 24cm, đường phân giác AD. Điểm E thuộc đoạn
thẳng AD sao cho AE = \(\dfrac{3}{5}\) AD . Gọi K là giao điểm của BE và AC. Tính độ dài AK, KC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý phân giác:
BDCD=ABAC=23⇒3BD=2CD=2(BC−BD)BDCD=ABAC=23⇒3BD=2CD=2(BC−BD)
⇔5BD=2BC⇒BD=25BC⇒BDBC=25⇔5BD=2BC⇒BD=25BC⇒BDBC=25
AE=35AD=35(AE+DE)⇒2AE=3DE⇒DEAE=23AE=35AD=35(AE+DE)⇒2AE=3DE⇒DEAE=23
Qua D kẻ đường thẳng song song AC cắt AE tại F
Áp dụng định lý Talet:
FDAK=FEKE=DEAE=23FDAK=FEKE=DEAE=23
Talet cho tam giác BCK: FDCK=BDBC=25FDCK=BDBC=25
⇒(FDAK):(FDCK)=(23):(25)⇔CKAK=53⇒(FDAK):(FDCK)=(23):(25)⇔CKAK=53
⇒CKAC−CK=53⇒3CK=5(24−CK)⇒CK=15⇒CKAC−CK=53⇒3CK=5(24−CK)⇒CK=15
AK=AC−CK=9
Theo tính chất phân giác: \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}\)
\(\Rightarrow\dfrac{BD}{BD+CD}=\dfrac{AB}{AB+AC}=\dfrac{16}{16+24}=\dfrac{2}{5}\Rightarrow\dfrac{BD}{BC}=\dfrac{2}{5}\)
Kẻ DM//BK với \(M\in AC\)
Trong tam giác ADM, áp dụng talet: \(\dfrac{AK}{KM}=\dfrac{AE}{ED}=\dfrac{3}{2}\)
Trong tam giác CBK, áp dụng talet: \(\dfrac{KM}{KC}=\dfrac{BD}{BC}=\dfrac{2}{5}\)
\(\Rightarrow\dfrac{AK}{KM}.\dfrac{KM}{KC}=\dfrac{3}{2}.\dfrac{2}{5}=\dfrac{3}{5}\Rightarrow\dfrac{AK}{KC}=\dfrac{3}{5}\Rightarrow AK=\dfrac{3}{5}KC\)
Mà \(AK+KC=AC=24\Rightarrow\dfrac{3}{5}KC+KC=24\)
\(\Rightarrow\dfrac{8}{5}KC=24\Rightarrow KC=15\)
\(\Rightarrow AK=\dfrac{3}{5}KC=9\)
Áp dụng định lý phân giác:
\(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{2}{3}\Rightarrow3BD=2CD=2\left(BC-BD\right)\)
\(\Leftrightarrow5BD=2BC\Rightarrow BD=\dfrac{2}{5}BC\Rightarrow\dfrac{BD}{BC}=\dfrac{2}{5}\)
\(AE=\dfrac{3}{5}AD=\dfrac{3}{5}\left(AE+DE\right)\Rightarrow2AE=3DE\Rightarrow\dfrac{DE}{AE}=\dfrac{2}{3}\)
Qua D kẻ đường thẳng song song AC cắt AE tại F
Áp dụng định lý Talet:
\(\dfrac{FD}{AK}=\dfrac{FE}{KE}=\dfrac{DE}{AE}=\dfrac{2}{3}\)
Talet cho tam giác BCK: \(\dfrac{FD}{CK}=\dfrac{BD}{BC}=\dfrac{2}{5}\)
\(\Rightarrow\left(\dfrac{FD}{AK}\right):\left(\dfrac{FD}{CK}\right)=\left(\dfrac{2}{3}\right):\left(\dfrac{2}{5}\right)\Leftrightarrow\dfrac{CK}{AK}=\dfrac{5}{3}\)
\(\Rightarrow\dfrac{CK}{AC-CK}=\dfrac{5}{3}\Rightarrow3CK=5\left(24-CK\right)\Rightarrow CK=15\)
\(AK=AC-CK=9\)
câu hỏi bơ vơ:( ai giúp mình đi tròi