CMR A<2
A=1/1^2+1/2^2+1/3^2+.....+1/50^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2 + 1/2^2 + 1/3^2 + .....+ 1/50^2 < 1/1 + 1/1.2 + 1/2.3 +...+ 1/49.50
Đặt A = 1/1 + 1/1.2 + 1/2.3 +...+ 1/49.50
A= 1/1 - 1/1 + 1/1 -1/2 + 1/2 -1/3+...+ 1/49-1/50
A= 1/1 - 1/50
A= 49/50
Vì 49/50 < 1 mà 1/2 + 1/2^2 + 1/3^2 + .....+ 1/50^2 < 49/50 nên 1/2 + 1/2^2 + 1/3^2 + .....+ 1/50^2 <1
Vậy....
Nhìn cái đề gớm quá. Tập viết đề đi nhé b
Ta có:
\(\left(1-a^2\right)\left(1-b^2\right)\left(1-c^2\right)\ge0\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+1-a^2-b^2-c^2-a^2b^2c^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+a^2b^2c^2\le1+a^2b^2+b^2c^2+c^2a^2\)(1)
Ta có:
\(a^2+b^2+c^2+a^2b^2c^2\ge a^2+b^2+c^2\)(2)
Ta lại có
\(\hept{\begin{cases}a^2b\left(1-b\right)\ge0\\b^2c\left(1-c\right)\ge0\\c^2a\left(1-a\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2b\ge a^2b^2\\b^2c\ge b^2c^2\\c^2a\ge c^2a^2\end{cases}}\)
\(\Rightarrow a^2b+b^2c+c^2a\ge a^2b^2+b^2c^2+c^2a^2\)
\(\Rightarrow1+a^2b+b^2c+c^2a\ge1+a^2b^2+b^2c^2+c^2a^2\)(3)
Từ (1), (2), (3)
\(\Rightarrow a^2+b^2+c^2\le1+a^2b+b^2c+c^2a\)
Bài 2:
\(1+\tan ^2a=1+\frac{\sin ^2a}{\cos ^2a}=\frac{\cos ^2a+\sin ^2a}{\cos ^2a}=\frac{1}{\cos ^2a}\)
\(1+\cot ^2a=1+\frac{\cos ^2a}{\sin ^2a}=\frac{\sin ^2a+\cos ^2a}{\sin ^2a}=\frac{1}{\sin ^2a}\)
Ta có đpcm.
1.
$0< a< 90^0\Rightarrow `1>\sin a, \cos a>0$
Do đó:
$\sin a-\tan a=\sin a-\frac{\sin a}{\cos a}=\frac{\sin a(\cos a-1)}{\cos a}<0$
$\Rightarrow \sin a< \tan a$
(đpcm)
$\cos a-\cot a=\cos a-\frac{\cos a}{\sin a}=\frac{\cos a(\sin a-1)}{\sin a}<0$
$\Rightarrow \cos a< \cot a$ (đpcm)
a) Để chứng minh rằng A < 100, ta chia A thành 100 nhóm :
A = \(1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+...+\frac{1}{7}\right)+\left(\frac{1}{2^3}+...+\frac{1}{15}\right)+...+\left(\frac{1}{2^{99}}+...+\frac{1}{2^{100}}-1\right)\)
Thay các phân số trong mỗi dấu ngoặc bằng phân số lớn nhất trong dấu ngoặc đó, ta được :
A < \(1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+...+\frac{1}{2^{99}}.2^{99}=100\)
b) Để chứng minh rằng A > 50, ta thêm và bớt \(\frac{1}{2^{100}}\)rồi viết A dưới dạng sau :
A = \(1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+\left(\frac{1}{5}+...+\frac{1}{2^3}\right)+\left(\frac{1}{9}+...+\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{99}+1}+...+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)
Thay các phân số trong mỗi dấu ngoặc bằng phân số nhỏ nhất trong dấu ngoặc đó, ta được :
A > \(1+\frac{1}{2}+\frac{1}{2^2}.2+\frac{1}{2^3}.2^2+...+\frac{1}{2^{100}}.2^{99}-\frac{1}{2^{100}}=1+\frac{1}{2}.100-\frac{1}{2^{100}}>50\)
Ta có: \(\left(2a+1\right)^2>\left(2a+1\right)^2-1\)
\(\Leftrightarrow\left(2a+1\right)^2>2a.\left(2a+2\right)\)
\(\Rightarrow\frac{1}{\left(2a+1\right)^2}< \frac{1}{2a.\left(2a+2\right)}\)(*)
ĐẶT \(A=\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{\left(2a+1\right)^2}\)
Áp dụng (*), ta có:
\(A< \frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2a.\left(2a+2\right)}\)
\(\Leftrightarrow A< \frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2a.\left(2a+2\right)}\right)\)
\(\Leftrightarrow A< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2a}-\frac{1}{2a+2}\right)\)
\(\Leftrightarrow A< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{2a+2}\right)\)
\(\Leftrightarrow A< \frac{1}{4}-\frac{1}{4a+4}< \frac{1}{4}\)
Vậy ..........
Có : 3^2 = 2.4+1
5^2 = 4.6 +1
..........
(2a+1)^2 = 2a.(2a+2)+1
=> VT < 1/2.4 + 1/4.6 + .... + 1/2a.(2a+2)
2VT < 2/2.4 + 2/4.6 + .... + 2/2a.(2a+2)
= 1/2 - 1/4 + 1/4 - 1/6 + ..... 1/2a - 1/2a+2 = 1/2 - 1/2a+2 < 1/2
=> VT < 1/2 (ĐPCM)
1/22 < 1/2.3 ; 1/32 < 1/3.4 ; .....; 1/502 < 1/50.51 => A < 1+1-1/2+1/2-1/3+...1/50-1/51 < 2
tổng đài tư vấn có bằng chứng ko
ko có thì đừng nói