Tìm a,b,c biết
a,bc x 1,5 = 7a,bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta thấy ngay rằng:ab,c=a,bcx10
vậy ta sẽ có bài toán tổng tỉ với tổng là 21.12 và tỉ số là 10
Số a,bc là:
21.12:(10+1)x1=1.92
Suy ra số abc là 192
a: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}=90^0-40^0=50^0\)
Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}\)
=>\(BC=\dfrac{6}{sin50}\simeq7,83\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=BC^2-AB^2\)
=>\(AC\simeq5,03\left(cm\right)\)
b: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{B}+58^0=90^0\)
=>\(\widehat{B}=32^0\)
Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}\)
=>\(BC=\dfrac{10}{sin58}\simeq11,79\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=BC^2-AB^2\)
=>\(AC=\sqrt{BC^2-AB^2}\simeq6,25\left(cm\right)\)
c: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}=90^0-58^0=32^0\)
Xét ΔABC vuông tại A có
\(sinB=\dfrac{AC}{BC}\)
=>\(AC=BC\cdot sinB=20\cdot sin58\simeq16,96\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB=\sqrt{BC^2-AC^2}\simeq10,6\left(cm\right)\)
d: Bạn ghi lại đề đi bạn
a. Vì 2 điểm B và C thuộc tia Ax(gt)
Suy ra: AC= AB + BC
Thay số: AC = 7+2=9
Vậy AC =9 cm
b. Làm tương tự chỉ cần thay AB=a BC=b thôi
a: Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
\(\Leftrightarrow cosA=\dfrac{13^2+15^2-12^2}{2\cdot13\cdot15}=\dfrac{25}{39}\)
=>\(\widehat{A}\simeq50^0\)
b: Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(\dfrac{5^2+8^2-BC^2}{2\cdot5\cdot8}=cos60=\dfrac{1}{2}\)
=>\(25+64-BC^2=40\)
=>\(BC^2=49\)
=>BC=7
a: Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{B}=55^0\)
Xét ΔABC vuông tại A có
\(AC=BC\cdot\sin55^0\)
\(\Leftrightarrow AC\simeq3.69\left(cm\right)\)
\(\Leftrightarrow AB\simeq2.58\left(cm\right)\)
a) Ta có: \(\widehat{B}+\widehat{C}=90^o\Rightarrow\widehat{B}=90^o-\widehat{C}=90^o-30^o=60^o\)
Mà: \(sinB=sin60^o=\dfrac{AC}{BC}\Rightarrow AC=sin60^o\cdot BC=\dfrac{\sqrt{3}}{2}\cdot8=4\sqrt{3}\left(cm\right)\)
Áp dụng định lý Py-ta-go ta có:
\(AB=\sqrt{BC^2-AC^2}=\sqrt{8^2-\left(4\sqrt{3}\right)^2}=4\left(cm\right)\)
b) Ta có:
\(cosB=cos60^o=\dfrac{AB}{BC}\Rightarrow BC=\dfrac{AB}{cos60^o}=\dfrac{10}{cos60^o}=\dfrac{10}{\dfrac{1}{2}}=20\left(cm\right)\)
Áp dụng định lý Py-ta-go ta có:
\(AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-10^2}=10\sqrt{3}\left(cm\right)\)
Bài 1:
\(a,=\left(2021-2022\right)^2=1\\ b,=3y-xy-y^2+3x-3y+xy-y^2=3x-2y^2\)
Bài 2:
\(a,\Leftrightarrow x\left(x-2021\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2021\end{matrix}\right.\\ b,\Leftrightarrow\left(x-3\right)\left(x^2-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=-2\end{matrix}\right.\)
Bài 4:
\(M=\left(4x^2-4x+1\right)+\left(y^2+6y+9\right)+2022\\ M=\left(2x-1\right)^2+\left(y+3\right)^2+2022\ge2022\\ M_{min}=2022\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Hình bn tự vẽ nhan
a/Ta có : góc A+góc B+góc C=180độ =>gócB=
góc-AgócC=90độ-45độ=45độ
sinC=AB/BC=>BC=AB/sinC
<=>BC=10/sin45độ=10√2cm
Xét tam giác ABC,gócA=90độ có:
BC^2=AB^2+AC^2(pytago)
=>AC^2=BC^2-AB^2
AC^2=(10√2)^2-10^2=100
AC=√100=10cm