Chứng minh rằng với mọi n∈N∗n∈N∗ ta có:
2+5+8+...+3n-1=\(\frac{n\left(3n+1\right)}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\frac{3n}{2.\left(3n+2\right)}\)
\(=\frac{n}{2\left(3n+2\right)}\)
\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right).\left(3n+2\right)}=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right).\left(3n+2\right)}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\left(\frac{3n+2}{2.\left(3n+2\right)}-\frac{2}{2.\left(3n+4\right)}\right)\)
\(=\frac{1}{3}.\frac{3n}{2.\left(3n+2\right)}=\frac{n}{2.\left(3n+2\right)}\)
Đặt A=1/2.5+1/5.8+...+1/(3n-1).(3n+2)
=>3A=3/2.5+3/5.8+...+3/(3n-1).(3n+2)
=>3A=1/2-1/5+1/5-1/8+...+1/3n-1-1/3n+2
=>3A=1/2-1/3n+2
=>3A=(3n+2-2)/[2.(3n+2)]
=>3A=3n/6n+4
=>A=3n/6n+4/3
=>A=n/6n+4
Đặt \(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+......+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=>3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+....+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\)
=> \(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{3n-1}-\frac{1}{3n+2}\)
=>\(3A=\frac{1}{2}-\frac{1}{3n+2}\)
=> \(3A=\frac{\left(3n+2\right):2}{3n+2}-\frac{1}{3n+2}\)
=> \(3A=\frac{1,5.n}{3n+2}\)
=>\(A=\frac{1,5.n}{3n+2}.\frac{1}{3}=>A=\frac{1,5.n}{\left(3n+2\right).3}=\frac{1,5.n}{9n+6}\)
\(Hay\) \(A=\frac{1,5n:1,5}{\left(9n+6\right):1,5}=\frac{n}{9n:1,5+6:1,5}=\frac{n}{6n + 4} \left(đpcm\right)\)
a,
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\\ =\left(n^2+3n-1\right)n+\left(n^2+3n-1\right)2-n^3+2\\ =n^3+3n^2-n+2n^2+6n-2-n^3+2\\ =5n^2+5n\\ =5\cdot\left(n^2+n\right)⋮5\\ \RightarrowĐpcm\)
b,
\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\\ =\left(6n+1\right)n+\left(6n+1\right)5-\left(3n+5\right)2n-\left(3n+5\right)\\ =6n^2+n+30n+5-6n^2-10n-3n-5\\ =18n⋮2\\ \RightarrowĐpcm\)
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(=2n^2-n^3-6n+3n^2+2-n+n^3+12n+8\)
\(=\left(2n^2+3n^2\right)+\left(n^3-n^3\right)+\left(12n-6n-n\right)+\left(8+2\right)\)
\(=5n^2+5n+10\)
\(=5\left(n^2+n+2\right)⋮5\forall n\in Z\left(đpcm\right)\)
n=1=> đẳng thức đúng
giả sử có số n=a thoả mãn pt=>
2+5+8+....+(3a-1)=a(3a+1)/2=(3a^2+a)/2(1)
phải chứng minh n=a+1 thoả mãn pt:
2+5+8+......+(3a+2)=(a+1)(3a+4)/2=(3a^2+7a+4)/2(2)
lấy (2) trừ (1) ta được:
(6a+4)/2=3a+2
=> 0=0 (đúng vs mọi a)
=> đẳng thức (2) đúg, dpcm
*n=1 thấy: 2=1x4/2 =>* đúng
Giả sử * đúng với n=k, ta có: 2+5+8+...+3k-1=k(3k+1)/2
=> 2+5+8+...+(3k-1)+(3k+2)=k(3k+1)/2+3k+2=(k(3k+1)+6k+4)/2
=> (k(3k+1)+3k+3k+4)/2=(k(3k+4)+3k+4)/2=(k+1)(3k+4)/2
tức là 2+5+8+...+3k+1=(k+1)(3k+4)/2
=> * đúng với n=k+1
=> Theo nguyên lí quy nạp => * đúng với mọi n thuộc N*
Chuyên toán sao học quy nạp sớm thế.