K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2016

Ta có A<1/12+1/1.2+1/2.3+1/3.4+...+1/49.50

A<1+1-1/2+1/2-1/3+1/3-1/4+1/49-1/50

A<2-1/50<2(đpcm)

26 tháng 8 2018

Câu a:
Ta có: 1/51 > 1/100 ; 1/52>1/100 ..... ; 1/99>1/100
        => 1/51+1/52+...+1/100 > 1/100+1/100+.....+1/100 ( 50 số ) = 50/100=1/2 (1)
Ta lại có: 1/52<1/51; 1/53<1/51;....; 1/100<1/51
        => 1/51+1/52+....+1/100<1/51+1/51+.......+1/51 ( 50 số = 50/51<1 (2)
  Từ (1) (2) => đpcm
Câu b làm tương tự :) 


        

21 tháng 3 2019

bạn ơi qua giúp mk với

21 tháng 3 2019

mk viết nhầm 

A = 1 / 2+ 1 / 32 + 1 / 4+ ... + 1 / 802 mới đúng nhé

22 tháng 6 2023

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

28 tháng 3 2018

a,1/51 > 1/100

  1/52 > 1/100

   1/53 > 1/100

    ...

     1/100=1/100

=>H>1/100 + 1/100 + 1/100 +...+1/100

    H>50/100=1/2   

          1/51<1/50

         1/52<1/50

           ....

           1/100<1/50

=>H<1/50+1/50+...+1/50

     H<50/50=1

 Vay1/2<H<1