Tìm x
a)\(\frac{8}{x}<\frac{x}{5}<\frac{25}{x}\) (x thuộc N*)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{8}< \frac{4}{x}< \frac{5}{7}\)
\(\frac{5}{8}\cdot\frac{4}{4}< \frac{4}{x}\cdot\frac{5}{5}< \frac{5}{7}\cdot\frac{4}{4}\)
\(\frac{20}{32}< \frac{20}{5x}< \frac{20}{28}\)
\(\Rightarrow\frac{20}{32}< \frac{20}{30}< \frac{20}{28}\)
\(5x=30\)
\(x=6\)
a)\(\frac{-5}{6}\).\(\frac{120}{25}\)<x<\(\frac{-7}{15}\).\(\frac{9}{14}\)
-4 <x<\(\frac{-3}{10}\)
\(\frac{-40}{10}\)< x <\(\frac{-3}{10}\)=>x E {-39:-38:-37:.....:-4}
b)\(\left(\frac{-5}{3}\right)^3\)<x<\(\frac{-24}{35}.\frac{-5}{6}\)
\(\frac{-875}{189}< x< \frac{108}{189}\)
=> x E {\(\frac{-874}{189},\frac{-873}{189},......,\frac{107}{189}\)}
\(\frac{1}{4}+\frac{8}{9}\le\frac{x}{36}\le1-\left(\frac{3}{8}-\frac{5}{6}\right)\)
<=> \(\frac{41}{36}\le\frac{x}{36}\le\frac{35}{24}\)
<=> \(\frac{82}{72}\le\frac{2x}{72}\le\frac{105}{72}\)
<=> \(82\le2x\le105\)
<=> \(41\le x\le52,5\)
Do \(x\in N\)nên \(x=\left\{x\in N|41\le x\le52,5\right\}\)
a) Điều kiện xác định của phân thức A là x#+-5
\(A=\frac{2\left(x+15\right)}{x^2-25}-\frac{x+3}{x+5}+\frac{x}{x-5}
\)
\(A=\frac{2\left(x+15\right)}{\left(x+5\right)\left(x-5\right)}-\frac{x+3}{x+5}+\frac{x}{x-5}\)
\(A=\frac{2\left(x+15\right)}{\left(x+5\right)\left(x-5\right)}-\frac{\left(x+3\right)\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}+\frac{x\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}\)
\(A=\frac{2x+30-\left(x^2-5x+3x-15\right)+x^2+5x}{\left(x+5\right)\left(x-5\right)}\)
\(A=\frac{2x+30-x^2+5x+3x-15+x^2+5x}{\left(x+5\right)\left(x-5\right)}=\frac{15x+15}{\left(x+5\right)\left(x-5\right)}=\frac{15\left(x+1\right)}{\left(x+5\right)\left(x-5\right)}\)
tick đúng nha, ý b tí mình giải nhé
\(\frac{1}{8}< \frac{x}{12}< \frac{y}{9}< \frac{1}{4}\)
=> x = 2, y = 45
Bài này có thể thử chọn
a) \(8< 2^x\le2^9.2^{-5}\)
\(\Leftrightarrow2^3< x\le2^{9-5}\)
\(\Leftrightarrow2^3< 2^x\le2^4\)
\(\Leftrightarrow3< x\le4\Leftrightarrow x=4\)
b) \(27< 81^3:3^x< 243\)
\(\Leftrightarrow3^2< \left(3^4\right)^3:3^x< 3^5\)
\(\Leftrightarrow3^2< 3^{12}:3^x< 3^5\)
\(\Leftrightarrow3^2< 3^{12-x}< 3^5\)
\(\Leftrightarrow2< 12-x< 5\)
\(\Leftrightarrow\hept{\begin{cases}x=8\\x=9\end{cases}}\)