Tìm GTNN của biểu thức A=(x^2+4x+12)/(x+1)^2 với x#-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
(x^2-4x+1)/(x^2)
=(x^2-4x+4-3)/(x^2)
=(x-2)^2-3 /(x^2)
x^2 > 0 \Rightarrow biểu thức đạt gtnn khi (x-2)^2-3 có giá tri âm
(x-2)^2 > hoac = 0\Rightarrow gtnn của tử số là -3
khi đó: (x-2)^2=0\Rightarrow x-2=0\Rightarrow x=2
\Rightarrow mẫu số là 2^2=4
vậy gtnn của bt là -3/4
Có gì sai sót mọi người góp ý hộ nha!
Ta có: \(A=\frac{x^2-4x+1}{x^2}\Leftrightarrow x^2\left(A-1\right)+4A-1=0\)
Để PT này có nghiệm thì: ∆' \(\ge0\)
\(\Leftrightarrow4+\left(A-1\right)\ge0\)
\(\Leftrightarrow A\ge-3\)
Đạt được khi x = 0,5
a) \(A=x^2-2x+5\)
\(=\left(x^2-2x+1\right)+4\)
\(=\left(x-1\right)^2+4\)
Vì \(\left(x-1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)
b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được
\(B=4x^2+4x+11\)
\(=4\left(x^2+x+\frac{11}{4}\right)\)
\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)
\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)
\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)
c) Tìm GTLN nhé
\(C=5-8x-x^2\)
\(=-x^2-2.x.4-16+16+5\)
\(=-\left(x+4\right)^2+21\)
Vì \(-\left(x+4\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)
Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)
\(\Leftrightarrow x=-4\)
Vậy\(C_{max}=21\Leftrightarrow x=-4\)
A = x2 - 2x + 5
= ( x2 - 2x + 1 ) + 4
= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )
B = 4x2 + 4x + 11
= ( 4x2 + 4x + 1 ) + 10
= ( 2x + 1 )2 + 10 ≥ 10 ∀ x
Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2
=> MinB = 10 <=> x = -1/2
C = 5 - 8x - x2
= -( x2 + 8x + 16 ) + 21
= -( x + 4 )2 + 21 ≤ 21 ∀ x
Đẳng thức xảy ra <=> x + 4 = 0 => x = -4
=> MaxC = 21 <=> x = -4
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)