K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2016

1.2...x+1.2...y=1.2...(x+y)

1.2...x.2+(x+1)...y=1.2...x...y...(x+y)

2(x+1)...y=(x+1)...y...(x+y)

2=(y+1)...(x+y)

Vậy x=1, y=1

Nếu x>y thì làm ngược lại

22 tháng 9 2019

Ta có : \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)

\(\frac{9}{2}y=\frac{15}{5}z\)=> \(\frac{45y}{10}=\frac{30z}{10}\)=> 45y = 30z => 3y = 2z => \(\frac{y}{2}=\frac{z}{3}\)

=> \(\frac{x}{33}=\frac{y}{4};\frac{y}{2}=\frac{z}{3}\)

=> \(\frac{x}{66}=\frac{y}{4};\frac{y}{4}=\frac{z}{12}\)

=> \(\frac{x}{66}=\frac{y}{4}=\frac{z}{12}\)và y - x + z = -120

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{66}=\frac{y}{4}=\frac{z}{12}=\frac{y-x+z}{4-66+12}=\frac{-120}{-50}=\frac{12}{5}\)

=> \(\hept{\begin{cases}\frac{x}{66}=\frac{12}{5}\\\frac{y}{4}=\frac{12}{5}\\\frac{z}{12}=\frac{12}{5}\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{792}{5}\\y=\frac{48}{5}\\z=\frac{144}{5}\end{cases}}\)

18 tháng 9 2016

Ta có: |x + 1| + |y| = 0

x + 1 = y = 0

 x + 1 = 0

=> x = 0 - 1

=> x = -1

Vậy x = -1 và y = 0

18 tháng 9 2016

Ta có: |x + 1| + |y| = 0

Vì giá trị tuyệt đối của 1 số luôn luôn nhận giá trị dương . 

Nên x + 1 = y = 0

Vì x + 1 = 0

=> x = 0 - 1

=> x = -1

Vậy x = -1 và y = 0

5 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau do đã có \(y+z+t\ne0\), sau đó nhân dãy đã cho vs nhau. cái kia mũ 3 lên

5 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}=\left(\frac{x+y+z}{y+z+t}\right)^3=\frac{x+y+z}{y+z+t}=\frac{x-y+z}{y-z+t}=\frac{x+y-z}{y+z-t}\)

=> \(\frac{x+y+z}{y+z+t}=\frac{x}{t}\) (1)

=> \(\frac{x-y+z}{y-z+t}=\frac{x}{t}\) (2)

=> \(\frac{x+y-z}{y+z-t}=\frac{x}{t}\) (3)

Từ (1);(2) và (3) => đpcm

13 tháng 8 2018

http://123link.pro/iWTEZme

bài này đơn giản quá

2 tháng 5 2016

giúp mình đi

22 tháng 12 2017

\(xy+x+y=4\)

\(\Leftrightarrow xy+x+y+1=4+1\)

\(\Leftrightarrow x\left(y+1\right)+\left(y+1\right)=5\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=5\)

\(\Leftrightarrow x+1;y+1\inƯ\left(5\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1=1\\y+1=5\end{matrix}\right.\\\left\{{}\begin{matrix}x+1=5\\y+1=1\end{matrix}\right.\\\left\{{}\begin{matrix}x+1=-1\\y+1=-5\end{matrix}\right.\\\left\{{}\begin{matrix}x+1-5\\y+1=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=4\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=-6\end{matrix}\right.\\\left\{{}\begin{matrix}x=-6\\y=-2\end{matrix}\right.\end{matrix}\right.\)

Vậy ...