ΔMKN có góc K=90 độ,theo định lí Pitago ta có..?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ap dung dinh li pi ta go cua tam giac vuong ABC
\(\Rightarrow BC^2=\text{A}B^2+\text{A}C^2\)
\(\Rightarrow BC^2=2^2+5^2\)
\(\Rightarrow BC^2=14\)
VAY \(BC=\sqrt{14}\) BN OI KO DUNG DINH LI PI TA GO LAM THE NAO..HAY BN VIẾT THIẾU ĐỀ
Dựng góc nhọn ∠xOy = α tùy ý.
Trên tia Ox lấy điểm B bất kì, kẻ BA ⊥ Oy (A ∈ Oy)
Theo định nghĩa tỉ số lượng giác của góc nhọn, ta có:
Dựng góc nhọn ∠xOy = α tùy ý.
Trên tia Ox lấy điểm B bất kì, kẻ BA ⊥ Oy (A ∈ Oy)
Theo định nghĩa tỉ số lượng giác của góc nhọn, ta có:
b) Áp dụng định lí pitago trong tam giác vuông OAB có:
O B 2 = O A 2 + A B 2
Từ đó ta có:
Xét tam giác ABC có A=90 độ=>tam giác ABC vuông ở A
áp dụng Py-ta-go :
BC2=AB2+AC2
=>102=AB2+(căn 75)2
=>100=AB2+75
=>AB2=25=>AB=5(cm)
câu b tự lm nhé bn,dễ lắm
Xét tam giác ABC có A=90 độ
=>tam giác ABC vuông ở A ( theo định lí Pytago đảo)
Theo định lí Py-ta-go ta có:
BC2=AB2+AC2
=>102=AB2+(\(\sqrt{75}\))2
=>100=AB2+75
=>AB2=25
=>AB=5(cm)
b)Ta có: AB=5cm (chứng minh trên)
BC=10cm (GT)
=>AB= 1/2 BC
=>Tam giác ABC là tam giác nửa đều
=> góc B=60o và góc C=30o (tính chất tam giác nửa đều)
a: Do AC > A'C' nên lấy được điểm C1 trên cạnh AC sao cho AC1=A′C′.
Ta có ΔABC1=ΔA'B'C'
Suy ra B′C′=BC1
Mặt khác hai đường xiên BC và BC1 kẻ từ B đến đường thẳng AC lần lượt có hình chiếu trên AC là AC và AC1.
Vì AC > AC1 nên BC > BC1.
Suy ra BC > B'C'.
b:
-Giả sử AC<A'C'.
Khi đó theo chứng minh câu a) ta có BC < B'C'. Điều này không đúng với giả thiết BC > B'C'.
Giả sử AC=A'C'. Khi đó ta có ΔABC=ΔA'B'C' (c.g.c).
Suy ra BC=B'C'.
Điều này cũng không đúng với giả thiết BC>B'C'. Vậy ta phải có AC>A'C'.
\(KM^2+KN^2=MN^2\)
ta có MK2+NK2=MN2