K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2016

\(S=3+\frac{3}{2}+\frac{3}{2^2}+....+\frac{3}{2^9}\)

\(S\cdot\frac{1}{3}=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

\(S\cdot\frac{2}{3}=2+1+\frac{1}{2}+...+\frac{1}{2^8}\)

\(S\cdot\frac{2}{3}-S\cdot\frac{1}{3}=2+1+\frac{1}{2}+...+\frac{1}{2^8}-1-\frac{1}{2}-...-\frac{1}{2^9}\)

\(S\cdot\frac{1}{3}=2-\frac{1}{2^9}\)

\(S=\left(2-\frac{1}{2^9}\right):\frac{1}{3}\)

\(S=\left(2-\frac{1}{2^9}\right)\cdot3\)

\(S=6-\frac{3}{2^9}\)

\(S=\frac{6\cdot2^9-3}{2^9}\)

9 tháng 7 2023

a) Đặt: \(A=1+2^2+2^3+...+2^{10}\)

\(\Rightarrow2A=2\left(1+2^2+2^3+...+2^9+2^{10}\right)\)

\(\Rightarrow2A=2+2^3+2^4+...+2^{10}+2^{11}\)

\(\Rightarrow2A-A=\left(2+2^3+2^4+...+2^{10}+2^{11}\right)-\left(1+2^2+2^3+...+2^{10}\right)\)

\(\Rightarrow A=\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(2-1\right)+\left(2^{11}-2^2\right)\)

\(\Rightarrow A=0+0+...+1+\left(2^{11}-2^2\right)\)

\(\Rightarrow A=1+2^{11}-2^2=1+2048-4=2045\)

Vậy: \(1+2^2+2^3+...+2^{10}=2045\)

b) 

a] \(60-3\left(x-1\right)=2^3\cdot3\)

\(\Rightarrow60-3\left(x-1\right)=24\)

\(\Rightarrow3\left(x-1\right)=36\)

\(\Rightarrow x-1=12\)

\(\Rightarrow x=13\)

b] \(\left(3x-2\right)^3=2\cdot2^5\)

\(\Rightarrow\left(3x-2\right)^3=2^6\)

\(\Rightarrow\left(3x-2\right)^3=\left(2^2\right)^3\)

\(\Rightarrow3x-2=2^2\)

\(\Rightarrow3x=6\)

\(x=2\)

c] \(5^{x+1}-5^x=500\)

\(\Rightarrow5^x\left(5-1\right)=500\)

\(\Rightarrow5^x\cdot4=500\)

\(\Rightarrow5^x=125\)

\(\Rightarrow5^x=5^3\)

\(\Rightarrow x=3\)

d] \(x^2=x^4\)

\(\Rightarrow x=x^2\)

\(\Rightarrow x-x^2=0\)

\(\Rightarrow x\left(1-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\1-x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

9 tháng 7 2023

giúp mình đi các bạn

 

24 tháng 6 2015

 

Vì: \(\frac{3}{21}=\frac{3}{21}\)

\(\frac{3}{22}\) < \(\frac{3}{21}\)

\(\frac{3}{23}\) < \(\frac{3}{21}\)

\(\frac{3}{24}\)<\(\frac{3}{21}\)

\(\frac{3}{25}\)\(\frac{3}{21}\)

.....

\(\frac{2}{29}\)<\(\frac{3}{21}\)

\(\frac{2}{30}\)<\(\frac{3}{21}\)

Nên \(\frac{3}{21}+\frac{3}{22}+\frac{3}{23}+\frac{3}{24}+\frac{3}{25}+...+\frac{3}{29}+\frac{3}{30}\) < \(\frac{3}{21}.10\)

Ta có: \(\frac{3}{21}.10\) = \(\frac{10}{7}\)

Mà \(\frac{10}{7}\) < \(\frac{3}{2}\)

=>\(\frac{3}{21}+\frac{3}{22}+\frac{3}{23}+\frac{3}{24}+\frac{3}{25}+...+\frac{3}{29}+\frac{3}{30}\) < \(\frac{3}{2}\)

Vậy E < M

\(\frac{9}{8}-\frac{-11}{8}=\frac{9-\left(-11\right)}{8}=\frac{9+11}{8}=\frac{20}{8}=\frac{5}{2}\)

\(-\frac{1}{2}-\frac{5}{2}=\frac{-1-5}{2}=\frac{-6}{2}=-3\)

\(\frac{4}{3}-\frac{7}{3}=\frac{4-7}{3}=\frac{11}{3}\)

\(\frac{3}{-5}-\frac{-8}{10}=\frac{6}{-10}-\frac{-8}{10}=\frac{-6}{10}-\frac{-8}{10}=\frac{-6-\left(-8\right)}{10}=\frac{-6+8}{10}=\frac{2}{10}=\frac{1}{5}\)

\(\frac{5}{7}-\frac{-3}{21}=\frac{5}{7}-\frac{-1}{7}=\frac{5-\left(-1\right)}{7}=\frac{5+1}{7}=\frac{6}{7}\)

\(\frac{4}{-3}-\frac{9}{27}=\frac{4}{-3}-\frac{1}{3}=\frac{-4}{3}-\frac{1}{3}=\frac{-4-1}{3}=\frac{-5}{3}\)

\(\frac{7}{29}-\frac{9}{29}=\frac{7-9}{29}=\frac{2}{29}\)

\(\frac{-7}{22}-\frac{9}{22}=\frac{-7-9}{22}=\frac{-16}{22}=\frac{-8}{11}\)

\(\frac{-23}{7}-\frac{31}{7}=\frac{-23-31}{7}=\frac{-54}{7}\)

23 tháng 9 2019

\(S=1+3+3^2+3^3+...+3^{2014}\)

\(3S=3+3^2+3^3+3^4+...+3^{2015}\)

\(3S-S=\left(3+3^2+3^3+3^4+...+2^{2015}\right)-\left(1+3+3^2+3^3+...+3^{2014}\right)\)

\(2S=3^{2015}-1\)

\(S=\frac{3^{2015}-1}{2}\)

17 tháng 1 2022

 

a)29 . (19 – 13) – 19 . (29 – 13)

= 29 . 6 – 19 . 16

= 174 – 304

= –130.

b)31.(-18)+31.(-81)-31       

= 31. [-18 + (-81) - 1 ]

= 31. (-100)

= -3100

c)(7.3-3):(-6)  

(7.3-3):(-6)

= (21-3):(-6)

= 18 : (-6)

= 3

d)72:[(-6).2+4)]       

= 72 : ( -12 + 4 )

= 72 : -8

= -9

17 tháng 1 2022

Bài 2:

a)(-12).47+(-12).52+(-12)       

= (-12).(47+52+1)

= -1200

b)13.(23+22)-3.(17+28)  

 

13 . (23 + 22) - 3 . (17 + 28)

= 13 . 45 - 3 . 45

= ( 13 - 3 ) . 45

= 10 . 45

= 450

c)18-10:(-2)-7   

= 18-5+7

= 13+7

= 20

d)99:[(-7).2+5)

= 99: (-7).7= - 99

 

 

 


 

15 tháng 11 2023

    G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210

2.G = 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + 211

2G - G = (22 + 23 + 24 + 25 + 26 + 27 + 28 + 2+ 210 + 211) - (21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210)

G = 22 + 23 + 24 +25 + 26 + 27 + 28 + 29 + 210 + 211 - 21 -22 -23 -24 - 25 - 26 - 27 - 28 - 29 - 210

G = (22 -22) +(23 - 23) + (24 - 24) + (25 -25) + (26 - 26) +(27 - 27) +(28 -28) + (29 - 29) + (210 - 210) + (211 - 21)

G = 211 - 2

G = 2048 - 2 (đpcm)

15 tháng 11 2023

b, 

G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210

D = 2.(1+ 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29)

Vì 2 ⋮ 2 nên D = 2.(1+2+22+23+24+25+26+27+28+29)⋮2 (đpcm)

9 tháng 5 2022

a. bằng77

b. bằng 13

 

9 tháng 5 2022

lớp 2 đã học cái này rồi à

 

6 tháng 3 2023

\(S=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\\ 3S=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot3\cdot4+...+3\cdot99\cdot100\\ 3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\\ 3S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+....+99\cdot100\cdot101-98\cdot99\cdot100\\ 3S=99\cdot100\cdot101\\ S=\dfrac{99\cdot100\cdot101}{3}=33\cdot100\cdot101=3300\cdot101=333300\)

28 tháng 2 2017

S=3/2.3+3/3.6+3/4.9+...+3/6039.2014

S=1.3/2.3+1.3/3.6+1.3/4.3.3+...+3/3.2013.2014

triệt tiiêu ta có :

S=1/2+1/6+1/4.3+...+1/2013.2014

S=1/1.2+1/2.3+1/3.4+....+1/2013.2014

S=1-1/2014

S=2013/2014

k nhak