tìm giá trị lớn nhất lớn nhất của biểu thức a=-(45-9x)^4-(15+3y)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: -|5x - 2| \(\le\)0 \(\forall\)x
- |3y + 12| \(\le\)0 \(\forall\)y
=> 4 - |5x - 2| - |3y + 12| \(\le\)4 \(\forall\)x; y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}5x-2=0\\3y+12=0\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{2}{5}\\y=-4\end{cases}}\)
Vậy MaxE = 4 khi x = 2/5 và y = -4
Ta có : E = 4 - |5x - 2| - |3y + 12|
= 4 - (|5x - 2| + |3y + 12|)
Ta có : \(\hept{\begin{cases}\left|5x-2\right|\ge0\forall x\\\left|3y+12\right|\ge0\forall y\end{cases}}\Rightarrow\left|5x-2\right|+\left|3y+12\right|\ge0\forall x;y\)
=> \(-\left(\left|5x-2\right|+\left|3y+12\right|\right)\le0\forall x;y\)
=> \(4-\left(\left|5x-2\right|+\left|3y+12\right|\right)\le4\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}5x-2=0\\3y+12=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=-4\end{cases}}\)
Vậy GTLN của E là 4 khi x = 2/5 ; y = - 4
Được chớ!
\(A=\frac{2012}{2011+\left(x+1\right)^2}=\frac{2011+\left(1+x^2+2x\right)}{2011+\left(x+1\right)^2}+\frac{-x^2-2x}{2011+\left(x+1\right)^2}=1-\frac{x^2+2x}{2011+\left(x+1\right)^2}\)
\(\Rightarrow1-\frac{x^2+2x}{2011-\left(x+1\right)^2}\le1\)vì \(x^2\ge2x\)\(\forall x\) và \(\left(x+1\right)^2\ge0\)
Vậy giá trị lớn nhất của biểu thức A = 1
Dấu = xảy ra khi .....( cái này tự làm đi )
\(A=\left(\frac{2012}{2011}+9x-1\right)^2\)
đề như vậy phải ko bạn