giải pt sau 5x + 4 căn x -1=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{x^2-5x-1}=\sqrt{x-1}\)
Bình phương 2 vế pt , ta có :
\(x^2-5x-1=x-1\)
\(\Rightarrow x^2-5x-x=-1+1\)
\(\Rightarrow x^2-6x=0\)
\(\Rightarrow x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Thay lần lượt các giá trị trên vào pt, ta thấy \(x=6\) (thỏa)
Vậy pt có tập nghiệm \(S=\left\{6\right\}\)
a) \(\sqrt[]{x^2-4x+4}=x+3\)
\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)
\(\Leftrightarrow\left|x-2\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)
\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)
\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)
\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)
Giải pt (1)
\(\Delta=9+32=41>0\)
Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)
Giải pt (2)
\(\Delta=9+48=57>0\)
Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)
Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)
\(ĐKXĐ:x\ge\frac{1}{2}\)
Phương trình đã cho tương đương :
\(4.\left(x^2+1\right)+3.x.\left(x-2\right).\sqrt{2x-1}=2x^3+10x\)
\(\Leftrightarrow3x\left(x-2\right)\sqrt{2x-1}=2x^3-8x^2+10x-4\)
\(\Leftrightarrow3x.\left(x-2\right).\sqrt{2x-1}=2.\left(x-2\right).\left(x-1\right)^2\) (1)
Dễ thấy \(x=2\) là một nghiệm của (1). Xét \(x\ne2\). Khi đó ta có :
\(3x.\sqrt{2x-1}=2.\left(x-1\right)^2\)(*)
Đặt \(\sqrt{2x-1}=a\left(a\ge0\right)\Rightarrow-a^2=1-2x\)
Khi đó pt (*) có dạng :
\(3x.a=2.\left(x^2-a^2\right)\)
\(\Leftrightarrow2x^2-3xa-2a^2=0\)
\(\Leftrightarrow2x^2-4ax+xa-2a^2=0\)
\(\Leftrightarrow2x.\left(x-2a\right)+a.\left(x-2a\right)=0\)
\(\Leftrightarrow\left(x-2a\right)\left(a+2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2a=x\\a=-2x\end{cases}}\)
+) Với \(2a=x\Rightarrow2\sqrt{2x-1}=x\left(x\ge0\right)\)
\(\Leftrightarrow x^2=4.\left(2x-1\right)\)
\(\Leftrightarrow x^2-8x+4=0\)
\(\Leftrightarrow x=4\pm2\sqrt{3}\) ( Thỏa mãn )
+) Với \(a=-2x\Rightarrow\sqrt{2x-1}=-2x\left(x\le0\right)\)
\(\Leftrightarrow4x^2=2x-1\)
\(\Leftrightarrow4x^2-2x+1=0\) ( Vô nghiệm )
Vậy phương trình đã cho có tập nghiệm \(S=\left\{4\pm2\sqrt{3},2\right\}\)
c: =>(x+2)(x+3)(x-5)(x-6)=180
=>(x^2-3x-10)(x^2-3x-18)=180
=>(x^2-3x)^2-28(x^2-3x)=0
=>x(x-3)(x-7)(x+4)=0
=>\(x\in\left\{0;3;7;-4\right\}\)
c: =>(x-3)(x+2)(2x+1)(3x-1)=0
=>\(x\in\left\{3;-2;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)
a/ \(\tan^2x-\cot^2\left(x-\frac{\pi}{4}\right)=0\)
\(\Leftrightarrow\frac{1}{\cos^2x}-1-\frac{1}{\sin^2\left(x-\frac{\pi}{4}\right)}+1=0\)
\(\Leftrightarrow\frac{1}{\cos^2x}-\frac{1}{\left(\sin x.\cos\frac{\pi}{4}-\cos x.\sin\frac{\pi}{4}\right)^2}=0\)
\(\Leftrightarrow\frac{1}{\cos^2x}-\frac{1}{\left(\frac{\sqrt{2}}{2}\sin x-\frac{\sqrt{2}}{2}\cos x\right)^2}=0\)
\(\Leftrightarrow\frac{1}{\cos^2x}-\frac{1}{\frac{1}{2}\sin^2x-\sin x.\cos x+\frac{1}{2}\cos^2x}=0\)
\(\Leftrightarrow\frac{1}{2}\sin^2x-\sin x.\cos x+\frac{1}{2}\cos^2x-\cos^2x=0\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}\cos^2x-\sin x.\cos x-\frac{1}{2}\cos^2x=0\)
\(\Leftrightarrow\cos^2x+\sin x.\cos x-\frac{1}{2}=0\)
Đến đây là dễ r nha bn :3
\(5x+4\sqrt{x}-1=0\)đk : x > = 0
\(\Leftrightarrow5x+5\sqrt{x}-\sqrt{x}-1=0\)
\(\Leftrightarrow5\sqrt{x}\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\left(5\sqrt{x}-1\right)\left(\sqrt{x}+1>0\right)=0\Leftrightarrow x=\frac{1}{25}\left(tm\right)\)