K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\cos BCA=\dfrac{BC^2+AC^2-AB^2}{2\cdot AC\cdot BC}\)

\(\Leftrightarrow5^2+3^2-AB^2=2\cdot3\cdot5\cdot\dfrac{1}{2}=15\)

hay \(AB=\sqrt{19}\left(cm\right)\)

Xét ΔBAC có \(\cos ACB=\dfrac{CA^2+CB^2-AB^2}{2\cdot CA\cdot CB}\)

\(\Leftrightarrow3^2+5^2-AB^2=\dfrac{1}{2}\cdot2\cdot3\cdot5=15\)

\(\Leftrightarrow AB^2=19\)

hay \(AB=\sqrt{19}\left(cm\right)\)

14 tháng 2 2022

Dạ e cảm ơn nhiều ạ

a: AC=4cm

b: Xét ΔAMH vuông tại H và ΔAMN vuông tại N có

AM chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔAMN

Suy ra: MH=MN; AH=AN

hay AM là đường trung trực của NH

c: Xét ΔAHN có AH=AN

nên ΔAHN cân tại A

mà \(\widehat{HAN}=60^0\)

nên ΔAHN đều

24 tháng 7 2023

Xét tam giác ABC : \(AB^2+AC^2=3^2+4^2=5^2=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A \(\Rightarrow\widehat{A}=90^o\)
\(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\\ \Rightarrow\widehat{B}=53^o8'\)

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\\ \Rightarrow\widehat{C}=36^o52'\)

24 tháng 7 2023

Theo định lí pytago ta có: \(AB^2+AC^2=BC^2=9+16=BC^2=25\)

⇒ Tam giác ABC vuông tại A ⇒ \(\widehat{A}=90^\circ\)

Theo tỉ lệ thức trong tam giác vuông:

\(sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4}{5}=0,8\approx53^{\circ}\)

\(\widehat{C}=90^{\circ}-53^{\circ}=37^{\circ}\)

 

a: AC=căn 5^2+12^2=13cm

sin C=AB/AC=12/13

cos C=5/13

tan C=12/5

cot C=1:12/5=5/12

b: AC=căn 10^2+3^2=căn 109(cm)

sin C=AB/AC=3/căn 109

cos C=BC/AC=10/căn 109

tan C=AB/BC=3/10

cot C=10/3

c: BC=căn 5^2-3^2=4cm

sin C=AB/AC=3/5

cos C=4/5

tan C=3/4

cot C=4/3

a: BC=căn 3^2+4^2=5cm

b: Sửa đề: trên tia đối của tia AB

Xét ΔCMB có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCMB cân tại C

=>CM=CB

c: góc CBA=góc AMC=53 độ

=>góc HKC=53 độ

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:

Kẻ $BH\perp AC$ với $H\in AC$

Xét tam giác $ABH$ ta có: $\frac{AH}{AB}=\cos A=\cos 60^0=\frac{1}{2}$

$\Rightarrow AH=AB.\frac{1}{2}=2,5$ (cm)

$\frac{BH}{AB}=\sin A=\sin 60^0=\frac{\sqrt{3}}{2}$

$\Rightarrow BH=\frac{5\sqrt{3}}{2}$ (cm)

$CH=AC-AH=8-2,5=5,5$ (cm)

Áp dụng định lý Pitago cho tam giác $BHC$

$BC=\sqrt{BH^2+CH^2}=\sqrt{(\frac{5\sqrt{3}}{2})^2+5,5^2}=7$ (cm)

 

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Hình vẽ:

21 tháng 12 2021

bài 2:

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

15 tháng 2 2022

bài 2:

ta có: AB <AC <BC (Vì 3cm <4cm <5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

HT mik làm giống bạn Dương Mạnh Quyết