Cho ∆ABC có AC = 3cm, BC = 5cm, góc BCA = 60°. Tính AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔBAC có \(\cos ACB=\dfrac{CA^2+CB^2-AB^2}{2\cdot CA\cdot CB}\)
\(\Leftrightarrow3^2+5^2-AB^2=\dfrac{1}{2}\cdot2\cdot3\cdot5=15\)
\(\Leftrightarrow AB^2=19\)
hay \(AB=\sqrt{19}\left(cm\right)\)
a: AC=4cm
b: Xét ΔAMH vuông tại H và ΔAMN vuông tại N có
AM chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔAMN
Suy ra: MH=MN; AH=AN
hay AM là đường trung trực của NH
c: Xét ΔAHN có AH=AN
nên ΔAHN cân tại A
mà \(\widehat{HAN}=60^0\)
nên ΔAHN đều
Xét tam giác ABC : \(AB^2+AC^2=3^2+4^2=5^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A \(\Rightarrow\widehat{A}=90^o\)
\(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\\
\Rightarrow\widehat{B}=53^o8'\)
\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\\ \Rightarrow\widehat{C}=36^o52'\)
a: AC=căn 5^2+12^2=13cm
sin C=AB/AC=12/13
cos C=5/13
tan C=12/5
cot C=1:12/5=5/12
b: AC=căn 10^2+3^2=căn 109(cm)
sin C=AB/AC=3/căn 109
cos C=BC/AC=10/căn 109
tan C=AB/BC=3/10
cot C=10/3
c: BC=căn 5^2-3^2=4cm
sin C=AB/AC=3/5
cos C=4/5
tan C=3/4
cot C=4/3
a: BC=căn 3^2+4^2=5cm
b: Sửa đề: trên tia đối của tia AB
Xét ΔCMB có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCMB cân tại C
=>CM=CB
c: góc CBA=góc AMC=53 độ
=>góc HKC=53 độ
Lời giải:
Kẻ $BH\perp AC$ với $H\in AC$
Xét tam giác $ABH$ ta có: $\frac{AH}{AB}=\cos A=\cos 60^0=\frac{1}{2}$
$\Rightarrow AH=AB.\frac{1}{2}=2,5$ (cm)
$\frac{BH}{AB}=\sin A=\sin 60^0=\frac{\sqrt{3}}{2}$
$\Rightarrow BH=\frac{5\sqrt{3}}{2}$ (cm)
$CH=AC-AH=8-2,5=5,5$ (cm)
Áp dụng định lý Pitago cho tam giác $BHC$
$BC=\sqrt{BH^2+CH^2}=\sqrt{(\frac{5\sqrt{3}}{2})^2+5,5^2}=7$ (cm)
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
\(\cos BCA=\dfrac{BC^2+AC^2-AB^2}{2\cdot AC\cdot BC}\)
\(\Leftrightarrow5^2+3^2-AB^2=2\cdot3\cdot5\cdot\dfrac{1}{2}=15\)
hay \(AB=\sqrt{19}\left(cm\right)\)