K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔBAC có \(\cos ACB=\dfrac{CA^2+CB^2-AB^2}{2\cdot CA\cdot CB}\)

\(\Leftrightarrow3^2+5^2-AB^2=\dfrac{1}{2}\cdot2\cdot3\cdot5=15\)

\(\Leftrightarrow AB^2=19\)

hay \(AB=\sqrt{19}\left(cm\right)\)

14 tháng 2 2022

Dạ e cảm ơn nhiều ạ

\(\cos BCA=\dfrac{BC^2+AC^2-AB^2}{2\cdot AC\cdot BC}\)

\(\Leftrightarrow5^2+3^2-AB^2=2\cdot3\cdot5\cdot\dfrac{1}{2}=15\)

hay \(AB=\sqrt{19}\left(cm\right)\)

7 tháng 2 2016

Hình bé tự vẽ nhá.

Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H,có :

AH2 +BH2 =AB2

        AH= AB2 - BH2

        AH2 = 5- 32

=>.     AH2 = 16

         AH = 4 (cm)

Theo đề, có : AH vuông góc với BC

=> H thuộc BC

=> BH + HC = BC

             HC = 8 - 3

            HC = 5 (cm)

Áp dụng định lý Py-ta-go vào tam giác AHC vuông tại H, có :

AH2 + HC2 = AC2

4+ 52 = AC2

=> AC2 = 41

AC = \(\sqrt{41}\)

7 tháng 2 2016

Áp dụng đ.lí pytago trong tam giác vuông ABH ta có;

AH2+BH2=AB2 

=>AH2=AB2-BH2=52-32

=>AH2=25-9=16

=>AH=+(-)4

mà AH>0 =>AH=4 cm

Lại có;

BH+HC=BC 

=>HC=BC-BH=8-3

=>HC=5 cm

Áp dụng đ.lí pytago trong tam giác vuông AHC ta có:

AC2=AH2+HC2

=>AC2=42+52=16+25

=>AC2=41

=>AC=+(-)\(\sqrt{41}\)

Mà AC >0 =>AC=\(\sqrt{41}\)cm

Vậy AH=4 cm; HC=5 cm ; AC= \(\sqrt{41}\)cm

3 tháng 2 2018

- Ta có tam giác ABC vuông tại H

Áp dụng định lí Pi-ta-go có:

\(AB^2-BH^2=AH^2=5^2-3^2=16\Rightarrow AH=4\)

Tương tự ta có:...(bn tự làm)

Tam giác AHC vuông tại H

=> cũng như trên

3 tháng 2 2018

Tự vẽ nhé

 Áp dụng định lí Pi-ta-go vào tam giác ABH vuông tại H , ta có:

   AH\(^2\)+ BH\(^2\)= AB\(^2\)

    AH\(^2\)\(AB^2-BH^2\)

   \(AH^2=5^2-3^2\)

\(=>AH^2=16\)

\(AH=4cm\)

Theo đề, ta có: AH vuông góc với BC

=> H thuộc BC

=> BH + HC = BC

 HC = 8  - 3

 HC=5 cm

Áp dụng định lý Pi-ta-go vào tam giác AHC vuông tại H, ta có:

      \(AH^2+HC^2=AC^2\)

        \(4^2+5^2=AC^2\)

=>   \(AC^2=41\)

=> \(AC=\sqrt{41}\)

a: AC=4cm

b: Xét ΔAMH vuông tại H và ΔAMN vuông tại N có

AM chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔAMN

Suy ra: MH=MN; AH=AN

hay AM là đường trung trực của NH

c: Xét ΔAHN có AH=AN

nên ΔAHN cân tại A

mà \(\widehat{HAN}=60^0\)

nên ΔAHN đều

21 tháng 12 2021

bài 2:

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

15 tháng 2 2022

bài 2:

ta có: AB <AC <BC (Vì 3cm <4cm <5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

HT mik làm giống bạn Dương Mạnh Quyết

26 tháng 1 2016

3 x 5 : 2 = 7,5 nhé 

7 tháng 7 2023

A B C H

Từ B dựng đường thẳng vuông góc với AC cắt AC tại H

Xét tg vuông ABH có

\(\widehat{ABH}=90^o-\widehat{A}=90^o-60^o=30^o\)

\(\Rightarrow AH=\dfrac{AB}{2}=\dfrac{3}{2}=1,5cm\) (trong tg vuông cạnh đối diện góc 30 độ bằng nửa cạnh huyền)

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-1,5^2}\)

Xét tg vuông BCH

\(\widehat{ACB}=30^o\)

=> \(BH=\dfrac{BC}{2}\Rightarrow BC=2.BH\) (lý do như trên)

Bạn tự thay số và tính nốt nhé

6 tháng 7 2023

Xin lỗi mình nhầm từ chô \(\widehat{ACB}=30^o\)

Ta có

\(CH=AC-AH\) 

Xét tg vuông BCH

\(BC=\sqrt{BH^2+CH^2}\)

11 tháng 3 2021

hình bạn tự vẽ nha

Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H,có :

AH+BH=AB2

        AH2  = AB- BH2

        AH= 52  - 32

=>.     AH= 16

         AH = 4 (cm)

Theo đề, có : AH vuông góc với BC

=> H thuộc BC

=> BH + HC = BC

             HC = 8 - 3

            HC = 5 (cm)

Áp dụng định lý Py-ta-go vào tam giác AHC vuông tại H, có :

AH+ HC= AC2

42  + 5= AC2

=> AC= 41

AC = √41